YANG Xiao-ping, CUI Rui-rui, ZHANG Chi etc. Luminescent Properties of A Novel Near-infrared Super-long Afterglow Material Zn<sub>3</sub>Al<sub>2</sub>Ge<sub>2</sub>O<sub>10</sub>:Cr<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2014,35(3): 300-305
YANG Xiao-ping, CUI Rui-rui, ZHANG Chi etc. Luminescent Properties of A Novel Near-infrared Super-long Afterglow Material Zn<sub>3</sub>Al<sub>2</sub>Ge<sub>2</sub>O<sub>10</sub>:Cr<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2014,35(3): 300-305 DOI: 10.3788/fgxb20143503.0300.
Luminescent Properties of A Novel Near-infrared Super-long Afterglow Material Zn3Al2Ge2O10:Cr3+
was synthesized by high-temperature solid-phase method
and analyzed by means of XRD
photoluminescence spectra
curve of afterglow decay
etc.
The results indicate that the Zn
3
Al
2
Ge
2
O
10
:Cr
3+
is in fact ZnAl
2
O
4
:Cr
3+
spinel compound in which Al
3+
is partly replaced by Ge
4+
. Under 397 nm excitation
the emission spectra at room temperature mainly consist of two obvious narrow peaks superposition on a broadband which belongs to the spin-allowed
4
T
2
4
A
2
emission of Cr
3+
. The concentration quenching and temperature quenching could be observed as the Cr
3+
doping concentration and sintering temperature increasing. The optimized LLP performance and the strongest luminescence intensity could be obtained when the doping content of Cr
3+
(
x
) in Zn
3
Al
2-
x
Ge
2
O
10
:
x
Cr
3+
is 2% and the sintering temperature is 1 350 ℃. The persistence time of the material lasts more than 300 h. The strongest peaks of both emission spectrum and afterglow spectrum are at around 697 nm. The effect of sintering temperature on the LLP performance is analyzed and the mechanism of super long afterglow is researched.
关键词
Keywords
references
Aitasalo T, Dereń P, Hls J, et al. Persistent luminescence phenomena in materials doped with rare earth ions[J]. J. Solid State Chem., 2003, 171(1-2):114-122. [2] Smet P F, Nursen A, Van den Eeckhout K, et al. Extending the afterglow in CaA12O4:Eu, Nd persistent phosphors by electron beam annealing[J]. Opt. Mater. Exp., 2012, 2(10):1306-1313. [3] Zhai Y Q, Jiao F F, Zhang Z, et al. Preparation and properties of new blue long afterglow phosphor SrMgSi2O6:Eu2+, Dy3+[J]. J. Chin. Ceram. Soc.(硅酸盐学报), 2008, 36(12):1758-1763 (in Chinese). [4] Jha P, Chandra B P. Impulsive excitation of mechanoluminescence in SrAl2O4:Eu, Dy phosphors prepared by solid state reaction technique in reduction atmosphere[J]. J. Lumin., 2013, 143:280-287. [5] Cui C E, Lei X, Huang P, et al. Synthesis of red long lasting phosphors Y2O2S:Eu3+, Mg2+, Ti4+ by EDTA complexing sol-gel method[J]. Chin. J. Lumin.(发光学报), 2013, 34(4):416-420 (in Chinese). [6] Li X J, Liang Y J, Yang F, et al. Effect of fluxes on morphology and luminescent properties of Ba2SiO4:Eu2+ green phosphor[J]. Chin. J. Lumin.(发光学报), 2012, 33(8):808-811 (in Chinese). [7] Rasmussen J C, Kwon S, Sevick-Muraca E M, et al. The role of lymphatics in cancer as assessed by near-infrared fluorescence imaging[J]. Ann. Biomed. Eng., 2012, 40(2):408-421. [8] Tuerxun A, Deng K M, Chen Y H, et al. Highly efficient near-infrared quantum cutting in LaF3:Ho3+, Yb3+ for solar cells[J]. Chin. J. Lumin.(发光学报), 2011, 32(11):1133-1138 (in Chinese). [9] Chermont Q M, Chanac C, Seguin J, et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging[J]. Proc. Natl. Acad. Sci. USA, 2007, 104(22):9266-9271. [10] Grinberg M. Spectroscopic characterisation of disordered materials doped with chromium[J]. Opt. Mater., 2002, 19 (1):37-45. [11] Bessiere A, Jacquart S, Priolkar K, et al. ZnGa2O4:Cr3+: A new red long lasting phosphor with high brightness[J]. Opt. Exp., 2011, 19(11):10131-10137. [12] Pan Z W, Lu Y Y, Liu F. Sunlight activated long persistent luminescence in the near infrared from Cr3+-doped zinc gallogermanates[J]. Nat. Mater., 2012, 11(1):58-63. [13] Abdukayum A, Chen J T, Zhao Q, et al. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc allogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging[J]. J. Am. Chem. Soc., 2013, 135(38):14125-14133. [14] Wei Q. On the g factors of 2E state for 3d3 ions at trigonal symmetry[J]. Acta Phys. Sinica (物理学报), 2009, 58(5):3485-3490 (in Chinese). [15] Allix M, Chenu S, Vron E, et al. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4[J]. Chem. Mater., 2013, 25(9):1600-1606. [16] Singh V, Chakradhar R P S, Rao J L, et al. EPR and photoluminescence properties of combustion-synthesized ZnAl2O4:Cr3+ phosphors[J]. J. Mater. Sci., 2011, 46(7):2331-2337. [17] Mothudi B M, Ntwaeaborwa O M, Kumar A. Phosphorescent and thermoluminescent properties of SrAl2O4:Eu2+, Dy3+ phosphors prepared by solid state reaction method[J]. Phys. B, 2012, 407(10):1679-1682. [18] Trojan-Piegza J, Niittykoski J, Hls J, et al. Thermoluminescence and kinetics of persistent luminescence of vacuum-sintered Tb3+-doped and Tb3+, Ca2+-codoped Lu2O3 materials[J]. Chem. Mater., 2008, 20(6):2252-2261. [19] Anoop G, Mini K K, Jayara M K. Influence of a dopant source on the structural and optical properties of Mn doped ZnGa2O4 thin films[J]. Appl. Phys. A, 2008, 90(4):711-715.