SONG Yan, DING Ming-ye, HUANG Wen-juan etc. Synthesis and Optical Properties of Transparent &beta;-NaYF<sub>4</sub>:Yb,Tm/PMMA Nanocomposites[J]. Chinese Journal of Luminescence, 2014,35(3): 293-299
SONG Yan, DING Ming-ye, HUANG Wen-juan etc. Synthesis and Optical Properties of Transparent &beta;-NaYF<sub>4</sub>:Yb,Tm/PMMA Nanocomposites[J]. Chinese Journal of Luminescence, 2014,35(3): 293-299 DOI: 10.3788/fgxb20143503.0293.
Synthesis and Optical Properties of Transparent β-NaYF4:Yb,Tm/PMMA Nanocomposites
:Yb particles were prepared by solvothermal method. The as-prepared particles were characterized using X-ray diffraction (XRD)
field emission scanning electron microscopy (FESEM)
and photoluminescence (PL) spectra. With the increasing of Yb
3+
concentration
the luminus intensity of -NaYF
4
:Yb
Tm particle first increases
then decreases. When the mole fraction of Yb
3+
is 30%
the intensities of 474
645 nm reach the maximum
and when the mole fraction of Yb
3+
is 50%
the intensities of 450
692 nm reach the maximum. Then -NaYF
4
:30% Yb
Tm particls were coated by -NaYF
4
:Yb layer. When the mole fraction of Yb
3+
in shell layer is 10%
the luminus intensity of -NaYF
4
:Yb
Tm@-NaYF
4
:Yb particle is the maximum. The luminus intensities of all the samples increase after heat treatment
and the blue luminus intensity decreases and red luminus intensity increases with the increasing of ambient temperature. The transparent composite materials of -NaYF
4
:Yb
Tm and PMMA were synthesized by
in situ
polymerization
and showed good luminescence property.
关键词
Keywords
references
Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids[J]. Chem. Rev. Colum., 2004, 104(1):139-174. [2] Chivian J S, Case W E, Eden D D. The photon avalanche: A new phenomenon in Pr-based infrared quantum counters[J]. Appl. Phys. Lett., 1979, 35(2):124-126. [3] Lodahl P, Van Driel A F, Nikolaev I S, et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals[J]. Nature, 2004, 430(7000):654-657. [4] Shan G B, Demopoulos G P. Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer[J]. Adv. Mater., 2010, 22(39):4373-4377. [5] Van de Rijke F, Zijlmans H, Shang L, et al. Up-converting phosphor reporters for nucleic acid microarrays[J]. Nat. Biotechnol., 2001, 19(3):273-276. [6] Chen G, Ohulchanskyy T Y, Kumar R, et al. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence[J]. Acs Nano, 2010, 4(6):3163-3168. [7] Menyuk N, Dwight K, Pierce J W, et al. NaYF4:Yb, ErAn efficient upconversion phosphor[J]. Appl. Phys. Lett., 1972, 21(4):159-161. [8] De Wild J, Meijerink A, Rath J K, et al. Towards upconversion for amorphous silicon solar cells[J]. Sol. Energy Mater. Sol. Cells, 2012, 94(11):1919-1922. [9] Huang W J, Lu C H, Jiang C F, et al. Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4: Yb, Er (Tm)/FC transparent nanocomposite thin films[J]. J. Colloid Interf. Sci., 2012, 376(1):34-39. [10] Kobayshi T, Nakatsuka S, Iwafuji T, et al. Fabrication and superfluorescence of rare-earth chelate-doped graded index polymer optical fibers[J]. Appl. Phys. Lett., 1997, 71(17):2421-2423. [11] Vetrone F, Mahalingam V, Zamarrron A, et al. Near-infrared-to-blue upconversion in colloidal BaYF5:Tm3+, Yb3+ nanocrystals[J]. Chem. Mater., 2009, 21(9):1847-1851. [12] Yang L W, Han H L, Zhang Y Y, et al. White emission by frequency up-conversion in Yb3+-Ho3+-Tm3+ triply doped hexagonal NaYF4 nanorods[J]. J. Phys. Chem. C, 2009, 113(44):18995-18999. [13] Liu C, Zhang L, Zheng Q, et al. Advances in the surface engineering of upconversion nanocrystals[J]. Sci. Adv. Mater., 2012, 4(1):1-22. [14] Liu L, Wang Y, Zhang X R, et al. Upconversion mechanisms and thermal effects of Er3+ in Er3+ doped yttria nanocrystals[J]. J. Lumin., 2012, 132(6):1483-1488.