LIU Jin-feng, YAO bo, ZHENG Ting-cai etc. Structure Optimization of Organic/Inorganic Photosensitive Diode Based on PTCDA[J]. Chinese Journal of Luminescence, 2014,35(2): 218-223
LIU Jin-feng, YAO bo, ZHENG Ting-cai etc. Structure Optimization of Organic/Inorganic Photosensitive Diode Based on PTCDA[J]. Chinese Journal of Luminescence, 2014,35(2): 218-223 DOI: 10.3788/fgxb20143502.0218.
Structure Optimization of Organic/Inorganic Photosensitive Diode Based on PTCDA
A photodetector was prepared by a heterojunction of p-type silicon and (perylene-3
4
9
10-tetracarboxylic acid dianhydride) PTCDA
with comb-shape Au thin film acting as electrode and light-incident window. The experiment results show that the thickness of PTCDA and Au film have a great influence on the photoresponsivity and the external quantum efficiency of the photosensitive diode. The light responsivity can reach the maximum value of 0.3 A/W when PTCDA thickness is 100 nm. Then
the devices with the optimized 100 nm PTCDA and different thickness of Au electrode were fabricated. The optimal light responsivity can reach 0.5 A/W with 20 nm Au thickness.
关键词
Keywords
references
Toh E H, Wang G H, Samudra G, et al. Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization [J]. Appl. Phys. Lett., 2007, 90(26):263507-1-3. [2] Curry R J, Gillin W P, Knights A P, et al. Silicon-based organic light-emitting diode operating at a wavelength of 1.5 m [J]. Appl. Phys. Lett., 2000, 77(15):2271-2273. [3] Willander M, Zhao Q X, Nur O, et al. Some silicon-based heterostructures for optical applications [J]. J. Electron. Mater., 2005, 34(5):515-521. [4] Huang M M, Zhu X L. Development and application of silicon photodetectors [J]. Mechanical Engineering & Automation (机械工程与自动化), 2011, 6(4):203-205 (in Chinese) . [5] Yakuphanoglu F. Photovoltaic properties of the organic-inorganic photodiode based on polymer and fullerene blend for optical sensors [J]. Sens. Actuators A: Physical, 2008, 141(2):383-389. [6] Antohe S, Tomozeiu N, Gogonea S. Properties of the organic-on-inorganic semiconductor barrier contact diodes In/PTCDI/p-Si and Ag/CuPc/p-Si [J]. Phys. Stat. Sol. A, 1991, 125(1):397-408. [7] Chao C H, Chan C H, Wu F C, et al. Efficient hybrid organic/inorganic photovoltaic cells utilizing n-type pentacene and intrinsic/p-type hydrogenated amorphous silicon [J]. Solar Energy Materials and Solar Cells, 2011, 95(8):2407-2411. [8] Goh C, Scully S R, McGehee M D. Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells [J]. J. Appl. Phys., 2007, 101(11):114503-1-12. [9] Yamaura J, Muraoka Y, Yamauchi T, et al. Ultraviolet light selective photodiode based on an organic-inorganic heterostructure [J]. Appl. Phys. Lett., 2003, 83(11):2097-2099. [10] Era M, Morimoto S, Tsutsui T, et al. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4 [J]. Appl. Phys. Lett., 1994, 65(6):676-678. [11] Kagan C R, Breen T L, Kosbar L L. Patterning organic-inorganic thin-film transistors using microcontact printed templates [J]. Appl. Phys. Lett., 2001, 79(21):3536-3538. [12] Ostrick J, Dodabalapur A, Torsi L, et al. Conductivity-type anisotropy in molecular solids [J]. J. Appl. Phys., 1997, 81(10):6804-6808. [13] Proehl H, Nitsche R, Dienel T, et al. In situ differential reflectance spectroscopy of thin crystalline films of PTCDA on different substrates [J]. Phys. Rev. B, 2005, 71(16):165207-1-14. [14] Guan M, Cao G, Chu X, et al. Effect of MoO3-doped PTCDA as buffer layer on the performance of CuPc/C60 solar cells [J]. Phys. Status Solidi A, 2013, 210(6):1178-1182. [15] Agrawal R, Kumar P, Ghosh S. Mechanism of resistive switching in 3,4,9,10 perylenetetracarboxylic dianhydride (PTCDA) sandwiched between metal electrodes [J]. IEEE Trans. Electron Dev., 2008, 55(10):2795-2799. [16] Li L, Guan M, Cao G, et al. Highly efficient and stable organic light-emitting diodes employing MoO3-doped perylene-3, 4, 9, 10-tetracarboxylic dianhydride as hole injection layer [J]. Appl. Phys. A, 2010, 99(1):251-254. [17] Prabhakar V, Forrest S, Lorenzo J, et al. A patterned and passivated organic-inorganic semiconductor heterojunction diode [J]. Photon. Technol. Lett., IEEE, 1990, 2(10):724-726. [18] Soubiron T, Vaurette F, Nys J P, et al. Molecular interactions of PTCDA on Si(100) [J]. Surf. Sci., 2005, 581(2-3):178-188. [19] Fontana E. Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media [J]. Appl. Opt., 2006, 45(29):7632-7642. [20] Michael Q, Julian S. Semiconductor Manufacturing Technology [M]. Beijing: Electronic Industry Press, 2004(in Chinese). [21] Agrawal R, Ghosh S. Electrical characterization of Fermi level pinning in metal/3,4,9,10 perylenetetracarboxylic dianhydride interfaces [J]. Appl. Phys. Lett., 2006, 89(22):222114-1-3. [22] Nicoara N, Romn E, Gmez-Rodrguez J M, et al. Scanning tunneling and photoemission spectroscopies at the PTCDA/Au(111) interface [J]. Org. Electron., 2006, 7(5):287-294. [23] Forrest S R, Kaplan M L, Schmidt P H. Organic-on-inorganic semiconductor contact barrier diodes I. Theory with applications to organic thin films and prototype devices. [J]. J. Appl. Phys., 1984, 55(6):1492-1507. [24] Sze S M, Huang Z G. Semiconductor Device Physics [M]. Beijing: Electronic Industry Press, 1987 (in Chinese) . [25] Zalewski E F, Duda C R. Silicon photodiode device with 100% external quantum efficiency [J]. Appl. Opt., 1983, 22(18):2867-2873. [26] Forrest S R, Leheny R F, Nahory R E, et al. In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling [J]. Appl. Phys. Lett., 1980, 37(3):322-325. [27] Lunt R R, Giebink N C, Belak A A, et al. Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching [J]. J. Appl. Phys., 2009, 105(5):053711-1-7. [28] Kang H S, Choi Ch S, Choi W Y, et al. Characterization of phototransistor internal gain in metamorphic high-electron-mobility transistors [J]. Appl. Phys. Lett., 2004, 84(19):3780-3782. [29] Peng Y Q, Lv W L, Yao B, et al. High performance near infrared photosensitive organic field-effect transistors realized by an organic hybrid planar-bulk heterojunction [J]. Org. Electron., 2013, 14:1045-1051. [30] Berger S, Heimer K, Mack H G, et al. IR and SFM study of PTCDA thin films on different substrates [J]. Appl. Surf. Sci., 2005, 252(1):81-84. [31] Han H, Shi Ch, Gao X Y, et al. Structural and electronic properties of PTCDA thin films on epitaxial graphene [J]. ACS Nano, 2009, 3(11):3431-3436.
Deep UV Detection: from Single-crystalline MgZnO to Amorphous Ga2O3
Photodetector with Broadband-narrowband Dual-function Detection Mode
Response Wavelength Characterization of Ag-doped Chalcogenide Glass Photodetectors
High-performance Self-powered Ultraviolet Photodetectors Based on Ferroelectric PbZr0.52Ti0.48O3 Thin Films
All-inorganic p-i-n Photodetector Based on Lead-free CuSCN/Cs3Bi2I6Br3 Nanofilm
Related Author
LIANG Huili
ZHU Rui
DU Xiaolong
MEI Zengxia
JIANG Yan
GAO Feng
LI Lin
LYU Songzhu
Related Institution
Institute of Physics, Chinese Academy of Sciences
Songshan Lake Materials Laboratory
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University
Physics Department, Harbin Institute of Technology
School of Photoelectric Engineering, Changchun University of Science and Technology