CAO Lin-hai, LU Chun-hua, DING Ming-ye etc. Effects of Different Volume Ratio of Diglycol to Water on The Crystalline Phase of &beta;-NaYF<sub>4</sub>:Yb<sup>3+</sup>,Er<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2014,35(2): 149-155
CAO Lin-hai, LU Chun-hua, DING Ming-ye etc. Effects of Different Volume Ratio of Diglycol to Water on The Crystalline Phase of &beta;-NaYF<sub>4</sub>:Yb<sup>3+</sup>,Er<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2014,35(2): 149-155 DOI: 10.3788/fgxb20143502.0149.
Effects of Different Volume Ratio of Diglycol to Water on The Crystalline Phase of β-NaYF4:Yb3+,Er3+
a simple hydrothermal route at different volume ratio of diglycol to water. X-ray diffraction (XRD)
field emission-scanning electron microscopy (FE-SEM)
transmission electron microscopy (TEM)
and photoluminescence (PL) spectra were used to characterize and analysis the samples. FE-SEM images show that the samples have a smaller size with the increase of volume ratio of diglycol to water and finally can reach nanoscale. XRD results have proven that the volume ratios of diglycol to water have an effect on crystalline phase
and -NaYF
4
phase begins to appear in the products when volume ratio of diglycol to water reaches to 30/10 mL. The forming mechanism is proved to be correct and get a simulation diagram of the relationship between phase transition time and volume ratio of diglycol to water. TEM images indicate that the samples belong to the polycrystalline and have good crystallinity. Under the excitation of 980 nm semiconductor laser
-NaYF
4
crystal can emit bright blue/red upconversion luminescence.
关键词
Keywords
references
Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: Synthesis, characterization, and applications [J]. Adv. Mater., 2003, 15(5):353-389. [2] Sun S H, Zeng H. Size-controlled synthesis of magnetite nanoparticles [J]. J. Am. Chem. Soc., 2002, 124(28):8204-8205. [3] Yi G S, Lu H C, Zhao S Y, et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors [J]. Nano Lett., 2004, 4(11):2191-2196. [4] Lim S F, Riehn R, Ryu W S, et al. In vivo and scanning electron microscopy imaging of upconverting nanophosphors in caenorhabditis elegans [J]. Nano Lett., 2005, 6(2):169-174. [5] Liu S B, Gu S L, Liu W, et al. Growth and properties of nano ZnO [J]. Chin. J. Lumin.(发光学报), 2008, 29(3):527-531 (in Chinese). [6] Chen M, Xiao D Q. Mechanisms and developments of drug delivery by using carbon nanotube [J]. J. Funct. Mater.(功能材料), 2010, 41(1):1-4 (in Chinese). [7] Markovich G, Collier C P, Henrichs S E, et al. Architectonic quantum dot solids [J]. Accounts Chem. Res., 1999, 32(5):415-423. [8] Li C X, Quan Z W, Yang P P, et al. Shape-controllable synthesis and upconversion properties of lutetium fluoride(doped with Yb3+/Er3+) microcrystals by hydrothermal process [J]. J. Phys. Chem. C, 2008, 112(35):13395-13404. [9] Liu C X, Wang P C, Luo Y S, et al. Tb3+-Er3+ couples as spectral converters in NaYF4 for GaAs solar cells [J]. Chin. J. Lumin.(发光学报), 2011, 32(11):1120-1125 (in Chinese). [10] Lei L. Preparation and Characterization of Up-conversion Phosphors for Solar Cells . Shanghai: East China University of Science and Technology, 2011 (in Chinese). [11] Zhao W X, Peng B J, Wang Q H, et al. Multi-layer intemrence color filters in optically written displays based on up-conversion of near infrared light [J]. J. Sichuan Univ.(Engineering Science Edition)(四川大学学报:工程科学版), 2007, 39(6):154-157 (in Chinese). [12] Wang Z Y. Synthesis and Properties of Monodisperse Assemblies of NaLnF4(Ln=Y,Eu,Ce,Tm) Nanocrystals . Zhejiang: Zhejiang Normal University, 2012 (in Chinese) . [13] Yan Y C, Faber A J, De Waal H, et al. Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m [J]. Appl. Phys. Lett., 1997, 71(20):2922-2924. [14] Downing E A, Hesselink, Macfarlane R M, et al. A laser-diode-driven, three-color, solid-state 3-D display //Lasers and Electro-Optics, Anaheim: IEEE, 1996:89-90. [15] Xia H R, Li L X, Meng X L, et al. Raman spectra and laser properties of Yb-doped yttrium orthovanadate crystals [J]. J. Appl. Phys., 2000, 87(1):269-273. [16] Mathews M D, Ambekar B R, Tyagi A K, et al. High temperature X-ray diffraction studies on sodium yttrium fluoride [J]. J. Alloys Compd., 2004, 377(1-2):162-166. [17] Liang X, Wang X, Zhuang J, et al. Branched NaYF4 nanocrystals with luminescent properties [J]. Inorg. Chem., 2007, 46(15):6050-6055. [18] Menyuk N, Dwight K, Pierce J W. NaYF4:Yb, ErAn efficient upconversion phosphor [J]. Appl. Phys. Lett., 1972, 21(4):159-161. [19] Martin N, Boutinaud P, Mahiou R, et al. Preparation of fluorides at 80℃ in the NaF-(Y,Yb,Pr)F3 system [J]. J. Mater. Chem., 1999, 9(1):125-128. [20] Liang L, Wu H, Hu M, et al. Enhanced blue and green upconversion in hydrothermally synthesized hexagonal NaY1-xYbxF4:Ln3+(Ln3+=Er3+ or Tm3+) [J]. J. Alloys Compd., 2004, 368(1-2):94-100. [21] Yi G S, Chow G M. Synthesis of hexagonal-phase NaYFM4:Yb,Er and NaYFM4:Yb,Tm nanocrystals with efficient up-conversion fluorescence [J]. Adv. Funct. Mater., 2006, 16(18):2324-2329. [22] Lin J, Li C X. Hydrothermal synthesis, formation mechanisms and luminescence properties of the rare earth fluorides nano-and micro-materials [J]. Chin. J. Lumin.(发光学报), 2011, 32(6):521-534 (in Chinese). [23] Mai H X, Zhang Y W, Si R, et al. High-quality sodium rare-earth fluoride nanocrystals:Controlled synthesis and optical properties [J]. J. Am. Chem. Soc., 2006, 128(19):6426-6436.