CAI Xu-pu, LI Wan-cheng, GAO Fu-bin, JING Qiang, WU Guo-guang, ZHANG Bao-lin, DU Guo-tong. Influence of Indium Interlayer on The Crystal and Optical Properties of InN Grown on Silicon Substrate[J]. Chinese Journal of Luminescence, 2014,35(1): 96-100
CAI Xu-pu, LI Wan-cheng, GAO Fu-bin, JING Qiang, WU Guo-guang, ZHANG Bao-lin, DU Guo-tong. Influence of Indium Interlayer on The Crystal and Optical Properties of InN Grown on Silicon Substrate[J]. Chinese Journal of Luminescence, 2014,35(1): 96-100 DOI: 10.3788/fgxb20143501.0096.
Influence of Indium Interlayer on The Crystal and Optical Properties of InN Grown on Silicon Substrate
1 nm were deposited respectively before wurtzite InN was grown on silicon substrate by plasma-assisted molecular beam epitaxy (PA-MBE). X-ray diffraction (XRD) spectra
scanning electron microscope (SEM)
absorption and photoluminescence (PL) spectra were adopted to analyze the influence of indium interlayer on the crystal and optical properties of InN. XRD and SEM results indicate that indium interlayer with the thickness of 0.5 nm can improve the morphology of InN epitaxial with larger crystalline grains and have a better crystal quality. Absorption and PL spectra show that the sample with 0.5 nm indium interlayer exhibits the smallest blue-shift of absorption edge
the narrowest FWHM of PL spectra and the best near-band-edge radiative recombination efficiency. In conclusion
indium interlayer with appropriate thickness does have a positive influence on the crystal and optical properties of InN grown on silicon substrate.
关键词
Keywords
references
OLeary S K, Foutz B E, Shur M S, et al. Electron transport in wurtzite indium nitride[J]. J. Appl. Phys., 1998, 83(2):826-829.[2] Bellotti E, Doshi B K, Brennan K F, et al. Ensemble Monte Carlo study of electron transport in wurtzite InN[J]. J. Appl. Phys., 1999, 85(2):916-923.[3] Foutz B E, OLeary S K, Shur M S, et al. Transient electron transport in wurtzite GaN, InN, and AlN[J]. J. Appl. Phys., 1999, 85(11):7727-7734.[4] Davydov V Y, Klochikhin A A, Emtsev V V, et al. Band gap of InN and In-rich InxGa1-xN alloys[J]. Phys. Stat. Sol. B, 2002, 230(2):4-6.[5] Wu J, Walukiewicz W, Yu K M, et al. Unusual properties of the fundamental band gap of InN[J]. Appl. Phys. Lett., 2002, 80(21):3967-3969.[6] Matsuoka T, Okamoto H, Nakao M, et al. Optical bandgap energy of wurtzite InN[J]. Appl. Phys. Lett., 2002, 81(7):1246-1248.[7] Hori M, Kano K, Yamaguchi T, et al. Optical properties of InxGa1-xN with entire alloy composition on InN buffer layer grown by RF-MBE[J]. Phys. Stat. Sol. B, 2002, 234(3):750-754.[8] Davydov V Y, Klochikhin A A, Emtsev V V, et al. Band gap of hexagonal InN and InGaN alloys[J]. Phys. Stat. Sol. B, 2002, 234(3):787-795.[9] Yamamoto A, Tsujino M, Ohkubo M, et al. Nitridation effects of substrate surface on the metalorganic chemical vapor deposition growth of InN on Si and -Al2O3 substrates[J]. J. Cryst. Growth, 1994, 137(3-4):415-420.[10] Nanishi Y, Saito Y, Yamaguchi T, et al. Recent development of InN RF-MBE growth and its structural and property characterization[J]. Phys. Stat. Sol. C, 2004, 1(6):1487-1495.[11] Davydov V Y, Klochikhin A A, Seisyan R P, et al. Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap[J]. Phys. Stat. Sol. B, 2002, 229(3):1-3.[12] Hsiao C L, Tu L W, Chen M, et al. Polycrystalline to single-crystalline InN grown on Si(111) substrates by plasma-assisted molecular-beam epitaxy[J]. Jpn. J. Appl. Phys., 2005, 44(33-36):1076-1079.[13] Hsiao C L, Hsu H C, Chen L C, et al. Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors[J]. Appl. Phys. Lett., 2007, 91(18):181912-1-3.[14] Wu J, Walukiewicz W, Shan W, et al. Temperature dependence of the fundamental band gap of InN[J]. J. Appl. Phys., 2003, 94(7):4457-4460.[15] Wu G G, Du G T, Gao F B, et al. Near-infrared electroluminescence emission from an n-InN nanodots/p-Si heterojunction structure[J]. J. Phys. D: Appl. Phys., 2012, 45(21):215102-1-4.[16] Kumar M, Roul B, Bhat T N, et al. Kinetics of self-assembled InN quantum dots grown on Si(111) by plasma-assisted MBE[J]. J. Nanoparticle Res., 2011, 13(3):1281-1287.