CHEN Yi-bo, PAN Ying-jiao, LIANG Min-hua, FENG Jing-rong. Sol-combustion Synthesis and Analysis of Submicron Sized Ca<sub>2.40</sub>Lu<sub>0.54</sub>ScMgSi<sub>3</sub>O<sub>12</sub>:0.06Ce<sup>3+</sup> Phosphor for White Light Emitting Diodes[J]. Chinese Journal of Luminescence, 2014,35(1): 73-78
CHEN Yi-bo, PAN Ying-jiao, LIANG Min-hua, FENG Jing-rong. Sol-combustion Synthesis and Analysis of Submicron Sized Ca<sub>2.40</sub>Lu<sub>0.54</sub>ScMgSi<sub>3</sub>O<sub>12</sub>:0.06Ce<sup>3+</sup> Phosphor for White Light Emitting Diodes[J]. Chinese Journal of Luminescence, 2014,35(1): 73-78 DOI: 10.3788/fgxb20143501.0073.
Sol-combustion Synthesis and Analysis of Submicron Sized Ca2.40Lu0.54ScMgSi3O12:0.06Ce3+ Phosphor for White Light Emitting Diodes
phosphor was prepared by sol-combustion (SC) method. The phase-forming
morphology
photoluminescence and thermal quenching properties of phosphor were investigated. The results confirm that the Ca
2.40
Lu
0.54
ScMgSi
3
O
12
:0.06Ce
3+
phosphor can be prepared by SC method at 1ower temperature
and the morphology is much more uniform than the samples prepared by solid state (SS) method. Photoluminescence measurements show that the emission of the submicron sized Ca
2.40
Lu
0.54
ScMgSi
3
O
12
:0.06Ce
3+
phosphor presents a ~10 nm red shift compared with the SS sample
and the thermal quenching of the submicron sized Ca
2.40
Lu
0.54
ScMgSi
3
O
12
:0.06Ce
3+
phosphor is obviously weaker.
关键词
Keywords
references
Nakamura S, Fasol G. The Blue Laser Diode: GaN Based Light Emitters and Lasers[M]. Berlin: Springer, 1997.[2] Holonyak N, Bevaqua S F. Coherent (visible) light emission from Ga(As1-xPx)[J]. Appl. Phys. Lett., 1962, 1(4):82-83.[3] Nakamura S, Senoh M, Iwasa N, et al. High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum-well structures[J]. Jpn. J. Appl. Phys., 1995, 34:L797-799.[4] Nakamura S, Senoh M, Iwasa N, et al. High-power InGaN single-quantum-well-structure blue and violet light-emitting diodes[J]. Appl. Phys. Lett., 1995, 67(13):1868-1870.[5] Sheu J K, Chang S J, Kuo C H, et al. White light emission from near UV InGaN/GaN LED chip precoated with blue/green/red phosphors[J]. IEEE Photon. Technol. Lett., 2003, 15(1):18-20.[6] Neeraj S, Kijima N, Cheetham A K. Novel red phosphors for solid-state lighting:The system NaM(WO4)2-x(MoO4)x:Eu3+ (M=Gd, Y, Bi)[J]. Chem. Phys. Lett., 2004, 387(1):2-6.[7] Hreniak D, Strezk W, Mazur P, et al. Luminescence properties of Tb3+:Y3Al5O12 nano cystallites prepared by the sol-gel method[J]. Opt. Mater., 2004, 26:117-121.[8] Kuang J Y, Liu Y L, Zhang J X, et al. Solvothermal synthesis of nano-sphere-like La2O2S:Eu3+ phosphor[J]. J. Chem. Chin. Univ.(高等学校化学学报), 2005, 26(5):822-824 (in Chinese).[9] Chen Y B, Wang J, Gong M L, et al. TAG:Ce3+ phosphors prepared by a novel sol-combustion method for application in InGaN-based white LEDs[J]. Chem. Lett., 2007, 36(6):760-761.[10] Liu Y H, Zhuang W D, Hu Y S, et al. Synthesis and luminescence of sub-micron sized Ca3Sc2Si3O12:Ce green phosphors for white light-emitting diode and field-emission display applications[J]. J. Alloys Compd., 2010, 504(2):488-492.[11] Suzuki Y, Kakihana M, Shimomura Y, et al. Synthesis and luminescence of sub-micron sized Ca3Sc2Si3O12:Ce green phosphors for white light-emitting diode and field-emission display applications[J]. J. Mater. Sci., 2008, 43(7):2213-2216.[12] Yu L X, Song H W, Lu S Z, et al. Thermal quenching characteristics in LaPO4:Eu nanoparticles and nanowires[J]. Mater. Res. Bull., 2004, 39(13):2083-2088.[13] Liu Y F, Zhang X, Hao Z D, et al. Crystal structure and luminescence properties of (Ca2.94-xLuxCe0.06)(Sc2-yMgy)-Si3O12 phosphors for white LEDs with excellent colour rendering and high luminous efficiency[J]. J. Phys. D:Appl. Phys., 2011, 44(7):0754021-1-6.[14] Wu Y F, Chan Y H, Nien Y T, et al. Crystal structure and optical performance of Al3+ and Ce3+ codoped Ca3Sc2Si3O12 green phosphors for white LEDs[J]. J. Am. Ceram. Soc., 2013, 96(1):234-240.[15] Qiu G M, Geng X J, Chen Y J, et al. Optical property and soft chemical preparation methods of nanoscale rare earth luminescent materials[J]. J. Chin. Soc. Rare Earths (中国稀土学报), 2003, 21:109-114 (in Chinese).[16] Dorenbos P. Thermal quenching of Eu2+ 5d-4f luminescence in inorganic compounds[J]. J. Phys.:Condens. Matter, 2005, 17(50):8103-8111.[17] Van der Kolk E, Dorenbos P, De Haas J T M, et al. Thermally stimulated electron delocalization and luminescence quenching of Ce impurities in GdAlO3[J]. Phys. Rev. B, 2005, 71(4):045121-1-5.[18] Lee Y C, Chang Y S, Teoh L G, et al., The effects of the nanostructure of mesoporous TiO2 on optical band gap energy[J]. J. Sol-Gel. Sci. Technol., 2010, 56(1):33-38.[19] Omata T, Nose K, Otsuka-Yao-Matsuo S. Size dependent optical band gap of ternaryⅠ-Ⅲ-Ⅵ2 semiconductor nano crystals[J]. J. Appl. Phys., 2009, 105(7):073106-1-6.[20] Wang Y, Ouyang G, Wang L L, et al. Size-and composition-induced band-gap change of nanostructured compound of Ⅱ-Ⅵ semiconductors[J]. Chem. Phys. Lett., 2008, 463(4-6):383-386.
Regulating Near-infrared Luminescence of ZnGa2O4∶Cr3+via F/O Anion Substitution
Recent Progress on Cr3+ Doped Broad Band NIR Phosphors
The Difference of Luminous Performance Between Traditional Phosphor Packaging LED and Remote Phosphor LED
Luminescence and Encapsulation Properties of BaSi2O2N2 Doped with Divalent Europium
Investigation of Spectroscopic Properties in Eu2+ Activated Ba5-xSrx(PO4)3Cl
Related Author
WU Yubo
YU Shijie
HUANG Qianxing
SHAO Qiyue
ZHANG Liang-liang
ZHANG Jia-hua
HAO Zhen-dong
WU Hao
Related Institution
School of Material Science and Engineering, Southeast University
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Department of Electronic Science, Fujian Engineering Research Center for Solid-state Lighting, Xiamen University
The Institute of Rare Metals, Guangzhou Institute of Non-Ferrous Metals
College of Physics Science and Technology, Hebei University