LI Wei-jun, XIANG Dong. A Broadband Plasmonic Filter of Subwavelength Zigzag-shaped MIM Waveguides[J]. Chinese Journal of Luminescence, 2013,34(12): 1657-1661
LI Wei-jun, XIANG Dong. A Broadband Plasmonic Filter of Subwavelength Zigzag-shaped MIM Waveguides[J]. Chinese Journal of Luminescence, 2013,34(12): 1657-1661 DOI: 10.3788/fgxb20133412.1657.
A Broadband Plasmonic Filter of Subwavelength Zigzag-shaped MIM Waveguides
The transmission of a subwavelength zigzag-shaped metal-insulator-metal (MIM) plasmonic waveguide structure was numerically researched by using the finite-difference time-domain (FDTD) method. The zigzag-shaped waveguide has two bending corners
where waveguide can extend out from one to four cuts. Each cut can be looked as a self-existent resonant cavity. The resonant wavelength is approximately linear proportional to the depth of cut
and independent on the direction of cut. When any cut satisfies with the resonant condition
the transmission of the waveguide structure is close to zero at the resonant wavelength. With the increase of number of the same depth of cuts
the wavelength region of band gap is broaden gradually
thus a good broadband filter is formed.
关键词
Keywords
references
Dionne J A, Sweatlock L A, Atwater H A. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization[J]. Phys. Rev. B, 2006, 73(3):035407-1-9.[2] Li G Q, Li X H, Yang H D, et al. Fabrication of colorful metals with femtosecond laser pulses[J]. Chin. Opt.(中国光学), 2011, 4(1):72-76 (in Chinese).[3] Lee T W, Gray S K. Subwavelength light bending by metal slit structures[J]. Opt. Exp., 2005, 13(24):9652-9659.[4] Zhao H, Guang X, Huang J. Novel optical directional coupler based on surface plasmon polaritons[J]. Phys. E, 2008, 40(10):3025-3029.[5] Gao H, Shi H, Wang C, et al. Surface plasmon polariton propagation and combination in Y-shaped metallic channels[J]. Opt. Exp., 2005, 13(26):10795-10800.[6] Han Z, Liu L, Forsberg E. Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons[J]. Opt. Commun., 2006, 259(2):690-695.[7] Hossieni A, Massoud Y. A low-loss metal-insulator-metal plasmonic Bragg reflector[J]. Opt. Exp., 2006, 14(23):11318-11323.[8] Liu J, Chen B X, Yang H M. Ion-exchange single-mode stripe waveguide for excitation of surface plasma wave[J]. Opt. Precision Eng.(光学 精密工程), 2011, 19(10):2342-2348 (in Chinese).[9] Lin X S, Huang X G. Tooth-shaped plasmonic waveguide filters with nanometeric sizes[J]. Opt. Lett., 2008, 33(23):2874-2876.[10] Yuan W, Sang M H, Guo Q, et al. Research on narrow band filter of magnetic fluid based on optical waveguide with submillimeter scale[J]. Opt. Precision Eng.(光学 精密工程), 2011, 19(11):2618-2622 (in Chinese).[11] Zhai X, Wen S C, Xiang D, et al. A subwavelength plasmonic waveguide filter with a ring resonator[J]. J. Nanomater., 2013, Article ID 484207, 6 pages, http://dx.doi.org/10.1155/2013/484207.[12] Wang Q R, Li S H, Zheng S L, et al. SPP filters and selectors using nanoscale metal waveguide arrays with bends[J]. Opt. Commun., 2013, 309:282-285.[13] Zheng G G, Chen Y Y, Xu L H, et al. Metal-insulator-metal waveguide-based band-pass filter with circular ring resonator containing Kerr nonlinear medium[J]. Opt. Commun., 2013, 305:164-169.[14] Xiang D, Wang L L, Wang L, et al. Optical transmission through double-layer compound metallic gratings with subwavelength slits[J]. J. Mod. Opt., 2012, 59(15):1342-1348.[15] Gray S K, Kupka T. Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders[J]. Phys. Rev. B, 2003, 68(4):045415-1-11.[16] Xiang D, Wang L L, Li X F, et al. Transmission resonances of compound metallic gratings with two subwavelength slits in each period[J]. Opt. Exp., 2011, 19(3):2187-2192.