CHEN Xiang, XING Yan-hui, HAN Jun, HUO Wen-juan, ZHONG Lin-jian, CUI Ming, FAN Ya-ming, ZHU Jian-jun, ZHANG Bao-shun. Influence of Al Composition on Electrical and Structural Properties of Al<sub><em>x</em></sub>Ga<sub>1-<em>x</em></sub>N/AlN/GaN HEMT Materials Grown by MOCVD[J]. Chinese Journal of Luminescence, 2013,34(12): 1646-1650
CHEN Xiang, XING Yan-hui, HAN Jun, HUO Wen-juan, ZHONG Lin-jian, CUI Ming, FAN Ya-ming, ZHU Jian-jun, ZHANG Bao-shun. Influence of Al Composition on Electrical and Structural Properties of Al<sub><em>x</em></sub>Ga<sub>1-<em>x</em></sub>N/AlN/GaN HEMT Materials Grown by MOCVD[J]. Chinese Journal of Luminescence, 2013,34(12): 1646-1650 DOI: 10.3788/fgxb20133412.1646.
Influence of Al Composition on Electrical and Structural Properties of AlxGa1-xN/AlN/GaN HEMT Materials Grown by MOCVD
N/AlN/GaN high electron mobility transistor (HEMT) materials with different Al compositions (
x
=0.19
0.22
0.25
0.32) were grown on sapphire substrates by metalorganic chemical vapor deposition (MOCVD). The effects of Al composition on electrical and structural properties of HEMTs materials were analyzed. It is observed that two-dimensional electron gas (2DEG) density and mobility are improved with the raising of Al content within a certain range. However
too high Al composition will make the surface turn to be rougher and the mobility deteriorate
which was reinforced by the test results of atomic force microscopy (AFM). The optimum Al content is 25%. Based on this
the HEMT materials showed a high 2DEG density of 1.210
13
cm
-2
with a low sheet resistance of 310 /□
and highly Hall mobility of 1 680 cm
2
/(Vs) at room temperature.
关键词
Keywords
references
Dennis C, Takashi E, Yoshiki Y, et al. Uniform growth of AlGaN/GaN high electron mobility transistors on 200 mm silicon (111) substrate[J]. Appl. Phys. Exp., 2013, 6(2):026501-1-5.[2] Luo W J, Wang X L, Xiao H L, et al. Growth and fabrication of AlGaN/GaN HEMT based on Si(111) substrates by MOCVD[J]. Microelectron J., 2008, 39:1108-1111.[3] Wang T, Lachab M, Nakagawa D, et al. Investigation of two-dimensional electron gas in AlGaN/GaN heterostructures grown by metalorganic chemical vapor deposition (MOCVD)[J]. J. Cryst. Growth, 1999, 203(3):443-446.[4] Chen X, Xing Y H, Han J, et al. Influence of AlN interfacial layer on electrical properties of AlGaN/AlN/GaN HEMT materials grown by MOCVD[J]. Chin. J. Lasers (中国激光), 2013, 40(6):0606005-1-5 (in Chinese).[5] Ambacher O, Foutz B, Smart J, et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures[J]. J. Appl. Phys., 2000, 87(1):334-344.[6] Zhang Y F, Smorchkova I P, Elsass C R, et al. Charge control and mobility in AlGaN/GaN transistors: Experimental and theoretical studies[J]. J. Appl. Phys., 2000, 87(11):7981-7987.[7] Wang X L, Wang C M, Hu G X, et al. MOCVD-grown high-mobility AlGaN/AlN/GaN HEMT structure on sapphire substrate[J]. J. Cryst. Growth, 2007, 298:791-793.[8] Zhao G Y, Ishikawa H, Egawa T, et al. Electron mobility on AlGaN/GaN heterostructure interface[J]. Physica E, 2000, 7(3-4):963-966.[9] Arulkumaran S, Egawa T, Isikawa H, et al. Effects of annealing on Ti, Pd, and Ni/n-AlGaN Schottky diodes[J]. IEEE Trans. Elecron. Dev., 2001, 48(3):573-580.[10] Zhao G Y, Hiroyasu I, Takashi E, et al. High-mobility AlGaN/GaN heterostructures grown on sapphire by metal-organic chemical vapor deposition[J]. Jpn. J. Appl. Phys., 2000, 39:1035-1038.[11] Fieger M, Eickelkamp M, Rahimzadeh K L, et al. MOVPE, processing and characterization of AlGaN/GaN HEMTs with different Al concentrations on silicon substrates[J]. J. Cryst. Growth, 2007, 298:843-847.[12] Ding G J, Guo L W, Xing Z G, et al. Characterization of different-Al-content AlGaN/GaN heterostructures on sapphire[J]. Sci. China Phys. Mech. Astron., 2010, 53(1):49-53.[13] Smochkova I P, Elsass C R, Ibbetson J P, et al. Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy[J]. J. Appl. Phys., 1999, 86(8):4520-4526.[14] Xue J S, Hao Y, Zhang J C, et al. Improved electrical properties of the two-dimensional electron gas in AlGaN/GaN heterostructures using high temperature AlN interlayers[J]. Sci. China Tech. Sci., 2010, 53(6):1567-1571.[15] Hsu L. Electron mobility in AlGaN/GaN heterostructures[J]. Phys. Rev. B, 1997, 56(3):1520-1528.[16] Keller S, Parish G, Fini P T, et al. Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures[J]. J. Appl. Phys., 1999, 86(10):5850-5857.
Design and Optimization of Highly Efficient Light Extraction Encapsulation for Deep Ultraviolet LEDs
AlGaN Based Deep Ultraviolet LED for Inactivating Coxsackie Virus
AlGaN-based Deep Ultraviolet Light-emitting Diodes on Separated Multiple Quantum Barrier Electron Blocking Layer
Effect of Al Composition of Electron Blocking Layer on Photoelectric Performance of GaN-based Blue Laser Diode
Performance Enhancement of AlGaN-based Deep-ultraviolet Light Emitting Diodes by Employing Irregular H-shaped Quantum Barriers
Related Author
KANG Wenyu
YIN Jun
HUANG Jiaxin
XIANG Leilei
KANG Junyong
WU Yu
LAN Xiyu
ZHANG Zirui
Related Institution
Future Display Institute in Xiamen, Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Physical Science and Technology, Xiamen University
Peking University Third Hospital
College of Life Sciences, Wuhan University
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education, Anhui Polytechnic University