ZHANG Jin-sheng, NING Yong-qiang, ZHANG Jin-long, ZHANG Jian-wei, ZHANG Jian, WANG Li-jun. Temperature Characteristic Analysis of 808 nm Vertical Cavity Surface Emitting Laser Arrays[J]. Chinese Journal of Luminescence, 2013,34(12): 1636-1640
In order to study the output characteristics of 808 nm InGaAlAs vertical cavity surface emitting laser (VCSEL) array at different temperature
the InGaAlAs VCSEL temperature shift is calculated under the temperature-dependent Sellmeier equation. 22 arrays of 808 nm VCSEL are fabricated with non-closed structure. Each emitter diameter is 60 m. Lasing wavelength
optical power and the threshold current are measured by changing the temperature of heat sink. The maximum output power reaches 56 mW in the pulse width of 50 s
and the repetition frequency of 100 Hz at 20 ℃. The central wavelength is 808.38 nm
and the full width at half maximum is 2.5 nm
continuous output power reaches 22 mW
the output power decreases rapidly above 50 ℃
the temperature shift is 0.055 nm/℃. Experimental temperature shift is consistent with the theoretical value.
关键词
Keywords
references
Kenichi I. Vertical-cavity surface-emitting laser: Its conception and evolution[J]. Jpn. J. Appl. Phys., 2008, 47(1):1-10.[2] Shi J J, Qin L, Ning Y Q, et al. 850 nm vertical cavity surface-emitting laser arrays[J]. Opt. Precision Eng.(光学 精密工程), 2012, 20(1):17-23 (in Chinese).[3] Seurin J F, Xu G, Khalfin V, et al. Progress in high-power high-efficiency VCSEL arrays[J]. SPIE, 2009, 7229:722903-1-11.[4] Lyu L, Zhang K, Dai J J, et al. Self-mixing velocimetry based on verical-cavity surface-emitting laser[J]. Opt. Precision Eng.(光学 精密工程), 2011, 19(1):23-28 (in Chinese).[5] Hao Y Q, Ma J L, Yan C L, et al. A fundamental mode Nd:GdVO4 laser pumped by a large aperture 808 nm VCSEL[J]. Laser Phys. Lett., 2013, 10(5):055003-1-3.[6] Hao Y Q, Luo Y, Feng Y, et al. Large aperture vertical cavity surface emitting laser with distributed-ring contact[J]. Appl. Opt., 2011, 50(7):1034-1037.[7] Hao Y Q, Shang C Y, Feng Y, et al. High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure[J]. Laser Phys., 2011, 21(2):376-378.[8] Seurin J F, Xu G, Guo B, et al. Efficient vertical-cavity surface-emitting lasers for infrared illumination applications[J]. SPIE, 2011, 7952:79520G-1-10.[9] Van L R, Xiong Y, Watkins L S, et al. High power 808 nm VCSEL arrays for pumping of compact pulsed high energy Nd:YAG lasers operating at 946 nm and 1 064 nm for blue and UV light generation[J]. SPIE, 2011, 7912:79120Z-1-7.[10] Van Leeuwen R, Xiong Y, Seurin J F, et al. High-power vertical-cavity surface-emitting lasers for diode pumped solid-state lasers[J]. SPIE, 2012, 8381:838101-1-7.[11] Zhang Y, Ning Y, Zhang L, et al. Design and comparison of GaAs, GaAsP and InGaAlAs quantum-well active regions for 808-nm VCSELs[J]. Opt. Exp., 2011, 19(13):12569-12581.[12] Zhang Y, Ning Y, Zhang J, et al. Structural design of 808 nm InGaAlAs vertical-cavity surface-emitting laser[J]. Chin. J. Lasers (中国激光), 2011, 38(9):0902007-1-6 (in Chinese).[13] Kim J P, Sarangan A M. Temperature-dependent Sellmeier equation for the refractive index of AlxGa1-xAs[J]. Opt. Lett., 2007, 32(5):536-538.[14] Talghader J, Smith J S. Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities[J]. Appl. Phys. Lett., 1995, 66(3):335-337.[15] Yu S F. Analysis and Design of Vertical Cavity Surface Emitting Lasers [M]. New York: Wiley, 2003:194-197.[16] Koechner W. Solid-state Laser Engineering[M]. Berlin: Springer, 2006:57-59.[17] Shan X N, Liu Y, Cao J S. 808 nm kW-output high-efficiency diode laser sources[J]. Opt. Precision Eng.(光学 精密工程), 2011, 19(2):452-456 (in Chinese).[18] Zhu H B, Hao M M, Liu Y, et al. 808 nm high brightness module of fiber coupled diode laser[J]. Opt. Precision Eng.(光学 精密工程), 2012, 20(8):1684-1690 (in Chinese).