YIN Lan, LI Da, SHEN Hui, HUANG Yue-wen. Gridline Pattern Optimization of Solar Cell with High Sheet Resistance Homogeneous Emitters by Using PC2D[J]. Chinese Journal of Luminescence, 2013,34(12): 1613-1617
YIN Lan, LI Da, SHEN Hui, HUANG Yue-wen. Gridline Pattern Optimization of Solar Cell with High Sheet Resistance Homogeneous Emitters by Using PC2D[J]. Chinese Journal of Luminescence, 2013,34(12): 1613-1617 DOI: 10.3788/fgxb20133412.1613.
Gridline Pattern Optimization of Solar Cell with High Sheet Resistance Homogeneous Emitters by Using PC2D
In order to improve the fill factor and efficiency of the homogeneous high sheet resistance emitter solar cell
the effect of the gridline pattern on the performance of the solar cell was studied by using PC2D software. The results show that the efficiency of the solar cell can reach 19.09% after the optimization of the gridline pattern(109 gridlines with a width of 40 m). The results indicate that a high efficiency can be realized for solar cell with homogeneous emitter without employing complicated structure and fabrication process.
关键词
Keywords
references
Rohatgi A, Meier D. Developing novel low-cost high-throughput processing techniques for 20%-efficient monocrystalline silicon solar cells[J]. Photovoltaics International, 2010, 1:87-93.[2] Ding W C. Light management in crystalline silicon solar cells[J]. Chin. Opt.(中国光学), 2013, 6(5):717-728 (in Chinese).[3] Liu H, Lu Z W, Zhu R, et al. Development and tendency of photovoltaic concentrator system[J]. Chin. Opt.(中国光学), 2008, 1(1):49-56 (in Chinese).[4] Cuevas A, Balbuena M. Thick-emitter silicon solar cells[C]//20th IEEE PVSC, Las Vegas: IEEE, 1988:429-434.[5] Cuevas A, Russell D A. Co-optimisation of the emitter region and the metal grid of silicon solar cells[J]. Prog. Photovolt: Res. Appl., 2000, 8(6):603-616.[6] Cid M, Stem N. Homogeneous gaussian profile p+-type emitters: updated parameters and metal-grid optimization[J]. Mater. Res., 2002, 5(4):427-432.[7] Snchez M C, Stem N. Phosphorus emitter and metal-grid optimization for homogeneous (n+p) and double-diffused (n++n+p) emitter silicon solar cells[J]. Mater. Res., 2009, 12(1):57-62.[8] Cuevas A, Basore P A, Giroult-Matiakowski G, et al. Surface recombination velocity of highly doped n-type silicon[J]. J. Appl. Phys., 1996, 80(6): 3370-3375.[9] Green M A. Modelling implications of recent silicon bandgap narrowing expressions[J]. Prog. Photovolt: Res. Appl., 1997, 5(4):261-263.[10] Ebong A, Renshaw, Cooper I, et al. Understanding and implementing high quality contacts to advanced emitters for high effciency solar cells[R]. Georgia Institute of Technology, Xjet Solar LTD, Israel, 2011.[11] Hersh P A, Curtis C J, Van Hest M F A M, et al. Inkjet printed metallizations for Cu(In1-xGax)Se2 photovoltaic cells[J]. Prog. Photovolt: Res. Appl., 2011, 19(8):973-976.[12] Clugston D A. PC1D version 5: 32-bit solar cell modeling on personal computers[C]//IEEE 26th Photovoltaic Specialists Conference, Anaheim: IEEE, 1997:207-210.[13] Basore P A. PC2D: A circular-reference spreadsheet solar cell device simulator[C]//37th IEEE Photovoltaic Specialists Conference, 2011:72-77.[14] Meier D L, Good E A, Garcia R A, et al. Determining components of series resistance from measurements on a finished cell[C]//4th World Conf. PVSEC, IEEE, Waikoloa, 2006:1315-1318.