ZHANG Xiang-wei, NING Yong-qiang, QIN Li, LIU Yun, WANG Li-jun. Study of Oxide-grating Vertical-cavity Surface-emitting Lasers[J]. Chinese Journal of Luminescence, 2013,34(11): 1517-1520
ZHANG Xiang-wei, NING Yong-qiang, QIN Li, LIU Yun, WANG Li-jun. Study of Oxide-grating Vertical-cavity Surface-emitting Lasers[J]. Chinese Journal of Luminescence, 2013,34(11): 1517-1520 DOI: 10.3788/fgxb20133411.1517.
Study of Oxide-grating Vertical-cavity Surface-emitting Lasers
The difficulty of controlling the polarization of lager aperture VCSEL is the complicated transverse modes after analysing the structures of rectangle aperture VCSEL and sub-wavelength metal-grating VCSEL. So we put forward a new type of structure-oxidation type grating VCSEL structure. This structure can not only introduce anisotropy gain into active region but its biggest advantage is able to perfect control of large aperture VCSEL transverse mode. The sturcture was simulited by finite element software
and it is found that the structure achieve two goals when the grating ridge is 1.8 m.
关键词
Keywords
references
Wiedenmann D, King R, Jung C, et al. Design and analysis of single-mode oxidized VCSEL's for high-speed optical interconnects [J]. IEEE J. Sel. Top. Quant., 1991, 5(3):503-511.[2] Geels R S, Corzine S W, Coldren L A. InGaAs vertical cavity surface emitting lasers [J]. IEEE J. Quant. Elect., 1991, 27(6):1359-1367.[3] Mederer F, Jager R, Schnitzer P, et al. Multi-Gigabit/s graded-index POF data link with butt-coupled single-mode InGaAs VCSEL [J]. IEEE Photon. Technol. Lett., 2000, 12(2):199-201.[4] Margalit N M, Zhang S Z, Bowers J E. Vertical cavity lasers for telecom applications [J]. IEEE Commun. Mag., 1997, 35(5):164-170.[5] Giboney K S, Aronson L B, Lemoff B E. The ideal light source for data nets [J]. IEEE Spectrum, 1998, 35(2):43-53.[6] Chellappan K V, Erden E, Urey H. Laser-based displays: A review [J]. Appl. Opt., 2010, 49(25):F79-F98.[7] Ostermann J M, Debernardi P, Jalics C, et al. Surface gratings for polarization control of single- and multi-mode oxide-confined vertical-cavity surface-emitting lasers [J]. Opt. Commun., 2005, 246(4):511-519.[8] Grabherr M, King R, Jager R, et al. Improved output performance of high-power VCSELs [J]. IEEE J. Sel. Top. Quant, 2001, 7(2):210-216.[9] Jager R, Miller M, Thalmaier C, et al. Bottom-emitting VCSEL's for high-CW optical output power [J]. IEEE Photon. Technol. Lett., 1998, 10(8):1061-1063.[10] Ning Y Q, Qin L, Sun Y F, et al. High power VCSEL device with periodic gain active region [J]. SPIE, 2007, 6782:67820O-1-8.[11] Wang Z F, Ning Y Q, Zhang Y, et al. High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array [J]. Opt. Exp., 2010, 18(23):23900-23905.[12] Wilkinson C I, Woodhead J, Frost J E F, et al. Electrical polarization control of vertical-cavity surface-emitting lasers using polarized feedback and a liquid crystal [J]. IEEE Photon. Technol. Lett., 1999, 11(2):155-157.[13] Di Sopra F M, Brunner M, Hovel R. Polarization control in strained T-bar VCSELs [J]. IEEE Photon. Technol. Lett., 2002, 14(8):1034-1036.[14] Nishiyama N, Mizutani A, Hatori N, et al. Lasing characteristics of InGaAs-GaAs polarization controlled vertical-cavity surface-emitting laser grown on GaAs (311)B substrate [J]. IEEE J. Sel. Top. Quant., 1999, 5(3):530-536.[15] Wang W, Ning Y Q, Tian Z H, et al. Coherent polarization stabilization in large-aperture rectangular post bottom-emitting vertical-cavity surface-emitting lasers [J]. Opt. Commun., 2011, 284(5):1335-1338.[16] Shi J J, Qin L, Ning Y Q, et al. 850 nm vertical cavity surface-emitting laser arrays [J]. Opt. Precision Eng. (光学 精密工程), 2012, 20(1):17-23 (in Chinese).[17] Zhang X, Ning Y Q, Zeng Y G, et al. Optimization of element structure in 980 nm high-power vertical-cavity surface-emitting laser array [J]. Opt. Precision Eng.(光学 精密工程), 2011, 19(9):2014-2022 (in Chinese).