QU Jun-rong, ZHENG Jian-bang, WU Guang-rong, CAO Chong-de. Effect of Annealing Treatment on MOPPV-ZnSe Quantum Dots Composite Solar Cells[J]. Chinese Journal of Luminescence, 2013,34(11): 1511-1516
QU Jun-rong, ZHENG Jian-bang, WU Guang-rong, CAO Chong-de. Effect of Annealing Treatment on MOPPV-ZnSe Quantum Dots Composite Solar Cells[J]. Chinese Journal of Luminescence, 2013,34(11): 1511-1516 DOI: 10.3788/fgxb20133411.1511.
Effect of Annealing Treatment on MOPPV-ZnSe Quantum Dots Composite Solar Cells
UV-Vis absorption spectroscopy were employed to study their characteristics. The results indicate that MOPPV and ZnSe quantum dots forming a coating or mosaic structure which can be effectively combined
and ZnSe quantum dots keep good crystallinity
each with an average size of 4 nm in the composite
producing the light induced charge transfer phenomenon. The absorption spectra of the composite have a few red-shift with the increasing of the annealing temperature. The study of composite photoelectric performance indicates that it gradually shows obvious characteristic of diode
the power conversion efficiency reaches the maximum of 0.3726% at the temperature of 160℃.
关键词
Keywords
references
Declerck P, Houbertz R, Jakopic G. High refractive index inorganic-organic hybrid materials for photonic applications [J]. Mater. Res. Soc. Symp. Proc., 2008, 1007(S01-02):15-21.[2] Ren J, Zheng J B, Zhao J L. Optimized design of active layers in organic donor-acceptor solar cells [J]. Acta Phys. Sinica (物理学报), 2007, 56(5):2868-2871 (in Chinese).[3] Jiang B Y, Zheng J B, Wang C F, et al. Optimization of quantum dot solar cells based on structures of GaAs/InAs-GaAs/ZnSe [J]. Acta Phys. Sinica (物理学报), 2012, 61(13):138801-1-5 (in Chinese).[4] Peng Y C, Fu G S. Approach to quantum dot solar cells [J]. Chin. J. Mater. Res.(材料研究学报), 2009, 23(5):449-456 (in Chinese).[5] Zhao Y, Xiong S Z, Zhang X D. Next generation solar cell [J]. Acta Phys. Sinica (物理学报), 2010, 39(5):314-323 (in Chinese).[6] Wang F, Cheng Z M, Liu G B. The first principles of the electronic structures of sphalerite ZnSe [J]. Sci. Tech. Rev.,2010, 28(24):53-57.[7] Nikesh V V, Mahamuni S. Highly photoluminescent ZnSe/ZnS quantum dots [J]. Semicond. Sci. Technol., 2001, 16(8):687-690.[8] Xiong S, Huang S H, Tang A W. Investigation on electroluminescence of MEH-PPV/ZnSe nanocomposite device [J]. Spectrosc. Spect. Anal.(光谱与光谱分析), 2008, 28(2):249-252 (in Chinese).[9] Wu C S, Chen Y. Copolyfluorenes containing bipolar groups, synthesis and application to enhance electroluminescence of MEH-PPV [J]. Macromolecules, 2009, 42(11):3729-3737.[10] Kim Y K, Lee K Y. Size dependence of electroluminescence of nanoparticle dispersed MEH-PPV films [J]. Synth. Met., 2000, 111(2):207-211.[11] Kang P, Liu R B, Wang S, et al. Advance in quantum dot solar cells [J]. Chin. J. Power Source (电源技术), 2011, 135(8):1019-1024 (in Chinese).[12] Qu J R, Zheng J B, Wang C F, et al. The investigation on characterist -ics of solar cells made of MOPPV/ZnSe quantum dots composite system [J]. Acta Phys. Sinica (物理学报), 2013, 62(7):078802-1-5 (in Chinese).[13] Feng W, Gao Z K. Simulation of physical properties of organic photovoltaic cell [J]. Acta Phys. Sinica (物理学报), 2008, 57(4):2567-2573 (in Chinese).[14] Yu H Z, Wen Y X. Influence of the thickness and cathode material on the performance of the polymer solar cells [J]. Acta Phys. Sinica (物理学报), 2011, 60(3):038401-1-5 (in Chinese).[15] Huang H Z. Nanamaterial Analysis [M]. Beijing: Chemical Industry Press, 2003, 243.[16] Liu R X, Zhang L N, Li X Y, et al. Towards spectroscopic reference material of semiconductor quantum dots and the size characterization using HRTEM [J]. Scientia Sinica (中国科学), 2011, 41(9):1023-1028 (in English).[17] Zhang Y P, Zhang J J, Li W J, et al. Influence of annealing treatment on P3HT:PCBM active layer [J]. J. Sol. Energy, 2011, 32(2):220-225.[18] Hao H Y, Yao X, Wan X, et al. Optical absorption properties of ZnSe/SiO2 nanocomposites [J]. J. Xi'an Jiao Tong Univ.(西安交通大学学报), 2005, 39(12):1391-1396 (in Chinese).[19] Jiang B Y. Simulation and experiment of physical properties based on ZnSe quantum dot solar cells . Xi'an: Northwestern Polytechnical University, 2012 (in Chinese).[20] Ray B, Nair P R, Alam M A. Annealing dependent performance of organic bulk-heterojunction solar cells: A theoretical perspective [J]. Sol. Energ. Mat. Sol. Cells, 2011, 95(32):3287-3294.[21] Du H L, Deng Z B, Zhang G L. Improved performance of polymer solar cells by microwave annealing [J]. Chin. J. Lumin.(发光学报), 2012, 33(1):51-54 (in Chinese).[22] Zhao J H, Jiang J W, Wei N, et al. Thermal conductivity dependence on chain length in amorphous polymers [J]. J. Appl. Phys., 2013, 113(18):184304-1-5.
Rec.2020 Standard Green Light Emitting CsPbBr3 Nanocrystal Composites Based on Synergistic Induction Growth of BNQD and Glutaric Acid
Historical Evolution and Current Status of Key Materials and Technologies in Inkjet-printed Quantum Dot Electroluminescent Displays
Research Progresses on Infrared Superluminescent Diodes
Progress on Modulation Bandwidth of Quantum-dot LED in Visible Light Communication
Synthesis and Conversion Efficiency Optimization of Quantum Dots Layer for Full-color Micro-LED Display
Related Author
LIU Hanqiang
TU Yonghua
WEI Junqing
XIE Yangyang
LUO Xin
SUN Zhiguo
XU Bo
LIU Chen
Related Institution
Tianjin Key Laboratory of Thin Film Electronics and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology
School of Chemistry and Chemical Engineering, Anshun University
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology
State Key Laboratory on High-power Semiconductor Lasers, Changchun University of Science and Technology
Department of Electrical and Electronic Engineering, College of Engineering, Southern University of Science and Technology