LIN Ze-wen, LIN Zhen-xu, SONG Chao, ZHANG Yi, WANG Xiang, GUO Yan-qing, SONG Jie, HUANG Xin-tang, HUANG Rui. Electroluminescence Characteristics of Si-rich a-SiO<sub><em>x</em></sub>N<sub><em>y</em></sub>:H Flims[J]. Chinese Journal of Luminescence, 2013,34(11): 1479-1482
LIN Ze-wen, LIN Zhen-xu, SONG Chao, ZHANG Yi, WANG Xiang, GUO Yan-qing, SONG Jie, HUANG Xin-tang, HUANG Rui. Electroluminescence Characteristics of Si-rich a-SiO<sub><em>x</em></sub>N<sub><em>y</em></sub>:H Flims[J]. Chinese Journal of Luminescence, 2013,34(11): 1479-1482 DOI: 10.3788/fgxb20133411.1479.
Electroluminescence Characteristics of Si-rich a-SiOxNy:H Flims
:H films were fabricated by very high frequency plasma enhanced chemical vapor deposition method and used as the active layers in the light-emitting diodes. Strong red electroluminescence (EL) from the diode can be clearly observed at room temperature. The EL from the diode is peaked at around 715 nm
very similar to that of the PL spectra. The turn-on voltage for the device is 8 V. It is also found that there is a linear relationship between the integrated EL intensity and the injected current. In addition
the
I-V
characteristics indicates that the Pool-Frenkel (P-F) emission behavior is dominant in the carrier transport process in the diode. Combining with the microstructure analysis for the luminescent active layer
the red electroluminescence is tentatively suggested from the recombination of electron-hole pairs at band tail states of a-SiO
0.35
N
0.59
:H layer.
关键词
Keywords
references
Pavesi L, Dal Negro L, Mazzoleni C, et al. Optical gain in silicon nanocrystals [J]. Nature, 2000, 408(6811):440-444.[2] Lin C F, Liu C W, Chen M J, et al. Electroluminescence at Si band gap energy based on metal-oxide-silicon structures [J]. J. Appl. Phys., 2000, 87(12):8793-8795.[3] Chen K, Huang X, Xu J, et al. Visible photoluminescence in crystallized amorphous Si:H/SiNx:H multiquantum-well structures [J]. Appl. Phys. Lett., 1992, 61(17):2069-2071.[4] Liu C, Li C, Ji A, et al. Exploring extreme particle density and size for blue photoluminescence from as-deposited amorphous Si-in-SiNx films [J]. Appl. Phys. Lett., 86(22):223111-1-3.[5] Wang M, Li D, Yuan Z, et al. Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters [J]. Appl. Phys. Lett., 2007, 90(13):131903-1-3.[6] Huang R, Dong H, Wang D, et al. Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices [J]. Appl. Phys. Lett., 2008, 92(18):181106-1-3.[7] Huang R, Song J, Wang X, et al. Origin of strong white electroluminescence from dense Si nanodots embedded in silicon nitride [J]. Opt. Lett., 2012, 37(4):692-694.[8] Huang R, Chen K, Qian B, et al. Oxygen induced strong green light emission from low-temperature grown amorphous silicon nitride films [J]. Appl. Phys. Lett., 2006, 89(22):221120-1-3.[9] Huang R, Chen K, Han P, et al. Strong green-yellow electroluminescence from oxidized amorphous silicon nitride light-emitting devices [J]. Appl. Phys. Lett., 2007, 90(9):093515-1-3.[10] Wang X, Huang R, Song C, et al. Effect of barrier layers on electroluminescence from Si/SiOxNy multilayer structures [J]. Appl. Phys. Lett., 2013, 102(9):081114-1-4.[11] Xu J, Makihara K, Deki H, et al. Electroluminescence from Si quantum dots/SiO2 multilayers with ultrathin oxide layers due to bipolar injection [J]. Solid State Commun., 2009, 149(19-20):739-742.