Tm) phosphors were synthesized by the conventional solid-state reaction at 950℃ for 2 h. The samples were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectra. The experimental results indicate that all the obtained-samples are pure hexagonal phase. Under UV light excitation
the doped rare earth ions (Tb
3+
Dy
3+
Sm
3+
and Tm
3+
) phosphor give blue-green
white
orange
and blue emission
respectively.
关键词
Keywords
references
Ye S, Xiao F, Pan Y X, et al. Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties [J]. Mater. Sci. Eng. R, 2010, 71(1):1-34.[2] Huang K W, Chen W T, Chu C I, et al. Controlling the activator site to tune europium valence in oxyfluoride phosphors [J]. Chem. Mater., 2012, 24(11):2220-2227.[3] Zakaria D, Fouriner M T, Mahiou R, et al. On Eu3+ luminescence in the hexagonal NaYF4 phase [J]. J. Alloys Compd., 1992, 188(1):250-254.[4] Park S M, Vogt T. Defect monitoring and substitutions in Sr3-xAxAlO4F (A=Ca, Ba) lattices and phosphors [J]. J. Phys. Chem. C, 2010, 114(26):11576-11538.[5] Shang M M, Li G G, Kang X J, et al. Tunable luminescence and energy transfer properties of Sr3AlO4F:RE3+(RE=Tm/Tb, Eu, Ce) phosphors [J]. ACS Appl. Mater. Interf., 2011, 3(7):2738-2746.[6] Anant A, Setlur, Emil V, et al. Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors [J]. Chem. Mater., 2010, 22(13):4076-4082.[7] Park S M, Vogt T. Near UV excited line and broad band photoluminescence of an anion-ordered oxyfluoride [J]. J. Am. Chem. Soc., 2010, 132(13):4516-4517.[8] Im W B, Brinkley S, Hu J, et al. Sr2.975-xBaxCe0.025AlO4F: A highly efficient green-emitting oxyfluoride phosphor for solid state white lighting [J]. Chem. Mater., 2010, 22(9):2842-2849.[9] Fang Y, Li Y, Qiu T, et al. Photoluminescence properties and local electronic structures of rare earth-activated Sr3AlO4F [J]. J. Alloys Compd., 2010, 496(1-2):614-619.[10] Xia Z G, Liu R S. Tunable blue-green color emission and energy transfer of Ca2Al3O6F:Ce3+, Tb3+ phosphors for near-UV white LEDs [J]. J. Phys. Chem. C, 2012, 116(29):15604-15609.[11] Armelao L, Bottaro G, Bovo L, et al. Luminescent properties of Eu-doped lanthanum oxyfluoride sol-gel thin films [J]. J. Phys. Chem. C, 2009, 113(32):14429-14434.[12] Fujihara S, Tokumo K. Chemical processing for inorganic fluoride and oxyfluoride materials having optical functions [J]. J. Fluorine Chem., 2009, 130(12):1106-1110.[13] Im W B, George N, Kurzman J, et al. Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting [J]. Adv. Mater., 2011, 23(20):2300-2305.[14] Nagpure I M, Shinde K N, Dhoble S J, et al. Photoluminescence characterization of Dy3+ and Eu2+ ion in M5(PO4)3F(M=Ba, Sr, Ca) phosphors [J]. J. Alloys Compd., 2009, 481(1-2):632-638.[15] Huang Y L, Yosuke N, Taiju T, et al. The new red-emitting phosphor of oxyfluoride Ca2RF4PO4:Eu3+ (R=Gd, Y) for solid state lighting applications [J]. Opt. Exp., 2011, 19(7):6303-6311.[16] Feng G, Jiang W H, Chen Y B, et al. A novel red phosphor NaLa4(SiO4)3F:Eu3+ [J]. Mater. Lett., 2011, 65(1):110-112.[17] Zhang X M, Seo H J. Photoluminescence properties of Ce3+, Mn2+ co-doped Sr2LiSiO4F phosphor [J]. Phys. B, 2010, 405(10):2436-2439.[18] Blasse G, Grabmaier B C. Luminescence Materials [M]. Berlin: Springer-Verlag, 1994:Chapter 4-5.[19] Shang M M, Geng D L, Yang D M, et al. Luminescence and energy transfer properties of Ca2Ba3(PO4)3Cl and Ca2Ba3-(PO4)3Cl:A(A=Eu2+/Ce3+/Dy3+/Tb3+) under UV and low voltage electron bean excitation [J]. Inorg. Chem., 2013, 52(6):3102-3112.[20] Zhang C M, Hou Z Y, Chai R T, et al. Mesoporous SrF2 and SrF2:Ln3+(Ln=Ce,Tb,Yb,Er) hierarchical microspheres:Hydrothermal synthesis, growing mechanism, and luminescent properties [J]. J. Phys. Chem. C, 2010, 114(15):6928-6936.[21] Shang M M, Geng D L, Kang X J, et al. Hydrothermal derived LaOF:Ln3+ (Ln=Eu, Tb, Sm, Tm, and/or Ho) nanocrystals with multicolor-tunable emission properties [J]. Inorg. Chem., 2012, 51(20):11106-11116[22] Ptacek P, Schfer H, Zerzouf O, et al. Crystal phase control of NaGdF4:Eu3+ nanocrystals:influence of the fluoride concentration and molar ratio between NaF and GdF3 [J]. Cryst. Growth Des., 2010, 10(5):2434-2438.[23] Park S M. Structure-composition-luminescence correlations in Sr2.5-3x/2Ba0.5SmxAl1-yInyO4F (0.001x, y0.1) oxyfluorides [J]. J. Solid State Chem., 2012, 186(1):204-207.[24] Park S M. Luminescent properties of Sr2.5-3x/2Ba0.5SmxAlO4F oxyfluorides [J]. J. Lumin., 2012, 132(4):875-878.[25] Carnall W T, Fields P R, Rajnak K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ [J]. J. Chem. Phys., 1968, 49(10):4424-4442.[26] Liu X M, Yan L S, Lin J. Synthesis and luminescent properties of LaAlO3:RE3+ (RE=Tm, Tb) nanocrystalline phosphors via a sol-gel process [J]. J. Phys. Chem. C, 2009, 113(19):8478-8483.
Microstructure and Optical Properties of 12CaO·7Al2O3:Pr3+ Phosphors for High Quality X-ray Imaging
Luminescence Properties and Application of Ce3+ Doped Ba3Y2(BO3)4 Phosphor
Methods for Evaluating Hydrolytic Degradation of Mn4+-activated Fluoride Phosphors
Enhanced Near-infrared Ⅱ Emission in MgAlxGa2-xO4∶Ni2+ Phosphor via Al/Ga Ions Substitution
Regulating Near-infrared Luminescence of ZnGa2O4∶Cr3+via F/O Anion Substitution
Related Author
YAN Hong
SONG Ting
ZHANG Meng
LI Sheng-nan
YANG Jian
LIU Chun-guang
ZHU Han-cheng
YAN Duan-ting
Related Institution
School of Physics, Northeast Normal University
Department of Physics, Changchun Normal University
Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
School of Materials Science and Engineering, Zhengzhou University
School of Electrical Engineering and Intelligentization, Dongguan University of Technology