YAO Xiu-wei, WANG Guo-feng, LI Ying, ZHANG Ji-sen. Synthesis and Upconversion Luminescence of NaLuF<sub>4</sub>:Yb<sup>3+</sup>, Er<sup>3+</sup> Microcrystals[J]. Chinese Journal of Luminescence, 2013,34(10): 1319-1323
YAO Xiu-wei, WANG Guo-feng, LI Ying, ZHANG Ji-sen. Synthesis and Upconversion Luminescence of NaLuF<sub>4</sub>:Yb<sup>3+</sup>, Er<sup>3+</sup> Microcrystals[J]. Chinese Journal of Luminescence, 2013,34(10): 1319-1323 DOI: 10.3788/fgxb20133410.1319.
Synthesis and Upconversion Luminescence of NaLuF4:Yb3+, Er3+ Microcrystals
microcrystals were synthesized by a EDTA-assisted hydrothermal method. The effects of pH value of the reaction solutions on the phase compositions
morphologies
and luminescence properties of NaLuF
4
:Yb
3+
Er
3+
microcrystals were investigated in detail. Under 980 nm excitation
the
4
G
11/2
4
I
15/2
2
H
9/2
4
I
15/2
2
H
11/2
4
I
15/2
4
S
3/2
4
I
15/2
and
4
F
9/2
4
I
15/2
emissions were observed. The relative intensity of
4
G
11/2
/
2
H
9/2
4
I
15/2
to
2
H
11/2
/
4
S
3/2
4
I
15/2
as well as
2
H
11/2
/
4
S
3/2
4
I
15/2
to
4
F
9/2
4
I
15/2
changed with increasing pH values. The upconversion luminescence mechanism of NaLuF
4
:Yb
3+
Er
3+
was investigated in detail.
关键词
Keywords
references
Wang G, Peng Q, Li Y. Luminescence tuning of upconversion nanocrystals [J]. Chem. Eur. J., 2006, 16(16):4923-4931.[2] Ehlert O, Thomann R, Darbandi M, et al. A four-color colloidal multiplexing nanoparticle system [J]. ACS Nano, 2008, 2(1):120-124.[3] Wang M, Huang Q, Zhang H, et al. Formation of YF3 nanocrystals and their self-assembly into hollow peanut-like structures [J]. Cryst. Growth Des., 2007, 7(10):2106-2111.[4] Li S, Zhang X, Hou Z, et al. Enhanced emission of ultra-small-sized LaF3:RE3+ (RE=Eu, Tb) nanoparticles through 1,2,4,5-benzenetetracarboxylic acid sensitization [J]. Nanoscale, 2012, 4(18):5619-5626.[5] Li H, Yang K S, Qi N, et al. Preparation and luminescence properties of Yb3+,Er3+-codoped oxyfluoride glass ceramics [J]. Chin. Opt.(中国光学), 2011, 4(6):672-677 (in Chinese)[6] Wang F, Liu X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chem. Soc. Rev., 2009, 38(4):976-984.[7] Wang G, Li Y, Jiang B, et al. In situ synthesis and photoluminescence of Eu3+ doped Y(OH)3@-NaYF4 core-shell nanotubes [J]. Chem. Commun., 2011, 47(28):8019-8021.[8] Yan R, Li Y. Down/up conversion in Ln3+-doped YF3 nanocrystals [J]. Adv. Funct. Mater., 2005, 15(5):763-770.[9] Zhang M, Fan H, Xi B, et al. Synthesis, characterization, and luminescence properties of uniform Ln3+-doped YF3 nanospindles [J]. J. Phys, Chem. C, 2007, 111(1):6652-6657.[10] Lenyre J, Ritcey A. Synthesis of lanthanide fluoride nanoparticles of varying shape and size [J]. Chem. Mater., 2005, 17(11):3040-3043.[11] Wang G, Qin W, Zhang J, et al. Synthesis, growth mechanism, and tunable upconversion luminescence of Yb3+/Tm3+-codoped YF3 nanobundles [J]. J. Phys. Chem. C, 2008, 112(32):12161-12167.[12] Pan G, Song H, Bai X, et al. Highly luminescent YVO4-Eu3+ nanocrystals coating on wirelike Y(OH)3-Eu3+ and Y2O3-Eu3+ microcrystals by chemical corrosion [J]. J. Phys. Chem. C, 2007, 111(33):12472-12477.[13] Chen D, Wang Y, Yu Y, et al. Intense ultraviolet upconversion luminescence from Tm3+/Yb3+:-YF3 nanocrystals embedded glass ceramic [J]. Appl. Phys. Lett., 2007, 91(5):051920-1-3.[14] Qin G, Qin W, Huang S, et al. Infrared-to-violet upconversion from Yb3+ and Er3+ codoped amorphous fluoride film prepared by pulsed laser deposition [J]. J. Appl. Phys., 2002, 92(11):6936-6938.[15] Dong B, Liu D, Wang X, et al. Optical thermometry through infrared excited green upconversion emissions in Er3+-Yb3+ codoped Al2O3 [J]. Appl. Phys. Lett., 2007, 90(18):181117-1-3.[16] Wang Y, Ohwaki J. New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion [J]. Appl. Phys. Lett., 1993, 63(24):3268-3270.[17] Lehmann O, Kmpe K, Haase M. Synthesis of Eu3+-doped core and core/shell nanoparticles and direct spectroscopic identification of dopant sites at the surface and in the interior of the particles [J]. J. Am. Chem. Soc., 2004, 126(45):14935-14942.[18] Wang G, Peng Q, Li Y. Upconversion luminescence of monodisperse CaF2:Yb3+,Er3+ nanocrystals [J]. J. Am. Chem. Soc., 2009, 131(40):14200-14201.[19] Bai X, Song H, Pan G, et al. Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria:Saturation and thermal effects [J]. J. Phys. Chem. C, 2007, 111(36):13611-13617.[20] Bhargava R, Gallaghar D, Hong X, et al. Optical properties of manganese doped nanocrystals of ZnS [J]. Phys. Rev. Lett., 1994, 72(3):416-419.[21] Krmer K, Biner D, Frei G, et al. Hexagonal sodium yttrium fluori de based green and blue emitting upconversi on phosphors [J]. Chem. Mater., 2004, 16(7):1244-1251.[22] Wang L, Li Y. Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials [J]. Nano Lett., 2006, 6(8):1645-1649.[23] Shi F, Wang J, Zhai X, et al. Facile synthesis of -NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence [J]. Cryst. Eng. Comm., 2011, 13:3782-3787.[24] Pollnau M, Gamelin D, Ldel S. Power dependence of upconversion luminescence in lanthanide and transition-meta-lion systems [J]. Phys. Rev. B, 2000, 61(5):3337-3346.[25] Wang G, Qin W, Wang L, et al. Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals [J]. Opt. Exp., 2008, 16(16):11907-11914.[26] Wang G, Qin W, Zhang J, et al. Enhancement of violet and ultraviolet upconversion emissions in Yb3+,Er3+-codoped YF3 nanocrystals [J]. Opt. Mater., 2008, 31(2):296-299.
Synthesis and Luminescence Properties of Er3+ Doped and Er3+-Yb3+ Co-doped Ca12Al14O32F2
Temperature Dependence of Upconversion Luminescence in NaYF4:Yb3+, Er3+ Nanoparticles
Passively Q-switched 2.8 μm Laser Based on Sb2O3 Saturable Absorber
Upconversion Optical Temperature Sensing of YbNbO4∶Ho3+ with Host Sensitization
Dual-mode Optical Thermometry with High Sensitivity Achieved in Na3Y(VO4)2∶Yb3+/Er3+
Related Author
LIU Xiu-ling
GUO Yan-yan
MI Xiao-yun
ZHANG Xi-yan
ZHAO Cheng-zhou
KONG Xiang-gui
SONG Shu-guang
ZENG Qing-hui
Related Institution
School of Materials Science and Engineering, Changchun University of Science and Technology
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
University of Chinese Academy of Sciences, Beijing 100049, China
College of Physics & Optoelectronic Engineering, Jinan University
Guangdong Provincial Engineering Research Center of Crystal and Laser Technology