XU Bing-yu, WANG Guo-feng, LI Ying, LIU Shuai, FENG Li, ZHANG Ji-sen. Synthesis, Characterization, and Photoluminescence of SrWO<sub>4</sub>:Eu<sup>3+</sup> Nanocrystals[J]. Chinese Journal of Luminescence, 2013,34(9): 1178-1182
XU Bing-yu, WANG Guo-feng, LI Ying, LIU Shuai, FENG Li, ZHANG Ji-sen. Synthesis, Characterization, and Photoluminescence of SrWO<sub>4</sub>:Eu<sup>3+</sup> Nanocrystals[J]. Chinese Journal of Luminescence, 2013,34(9): 1178-1182 DOI: 10.3788/fgxb20133409.1178.
Synthesis, Characterization, and Photoluminescence of SrWO4:Eu3+ Nanocrystals
nanocrystals were synthesized by a CTAB-assisted hydrothermal method. The nanocrystals were characterized by X-ray diffraction (XRD)
scanning electron microscope (SEM). The crystalline size of SrWO
4
:Eu
3+
decreases with the increasing of Eu
3+
and CTAB content in the reaction solutions gradually. Under 393 nm excitation
the
5
D
0
7
F
J
=1
2
3
4) and
5
D
1
7
F
0
transitions are observed
and the luminescence is dominated by
5
D
0
7
F
2
transition
indicating that Eu
3+
occupies a site lacking inversion symmetry. The positions of emission peaks are independent of excitation wavelength. When the excitation is performed at 466 nm
the emission intensity is the strongest.
关键词
Keywords
references
Riwotzki K, Meyssamy H, Schnablegger H, et al. Liquid-phase synthesis of colloids and redispersible powders of strongly luminescing LaPO4:Ce,Tb nanocrystals [J]. Angew. Chem. Int. Ed., 2001, 40(3):573-576.[2] Kawano K, Arai K, Yamada H, et al. Application of rare-earth complexes for photovoltaic precursors [J]. Sol. Energy Mater. Sol. Cells, 1997, 48(5):35-41.[3] Wang G, Qin W, Zhang J, et al. Synthesis, growth mechanism, and tunable upconversion luminescence of Yb3+/Tm3+-codoped YF3 nanobundles [J]. J. Phys. Chem. C, 2008, 112(32):12161-12167.[4] Yang Z, Yan D, Zhu K, et al. Color tunability of upconversion emission in YBO3:Yb, Er inverse opal [J]. Opt. Lett., 2001, 22:1245-1248.[5] Wang F, Han Y, Lim C, et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping [J]. Nature, 2010, 463(7284):1061-1065.[6] Feldmann C, Jstel T, Ronda C, et al. Inorganic luminescent materials: 100 years of research and application [J]. Adv. Funct. Mater., 2003, 13(7):511-516.[7] Ren Y, Lv S. Excitation spectrum intensity adjustment of SrWO4:Eu3+ red phosphors for light-emitting diode [J]. Acta Phys. Sinica (物理学报), 2011, 60(8):087404-1-6 (in Chinese).[8] Wang W, Yang P, Gai S, et al. Fabrication and luminescent properties of CaWO4:Ln3+(Ln=Eu, Sm, Dy) nanocrystals [J]. J. Nanopart. Res., 2010, 12(6):2295-2305.[9] Thongtem T, Kungwankunakorn S, Kuntalue B, et al. Luminescence and absorbance of highly crystalline CaMoO4, SrMoO4, CaWO4 and SrWO4 nanoparticles synthesized by co-precipitation method at room temperature [J]. J. Alloys Compd., 2010, 506(1):475-478.[10] Wang Z, Wang Y, Li Y, et al. Low dimensional effects on luminescent properties of CaWO4:Tb nanophosphor Sensors and displays:Principles, materials, and processing [J]. J. Electrochem. Soc., 2010, 157(4):J125-J129.[11] Xiao Q, Zhou Q, Li M. Synthesis and photoluminescence properties of Sm3+-doped CaWO4 nanoparticles [J]. J. Lumin., 2010, 130:1092-1094.[12] Thongtem T, Kaowphong S, Thongtem S. Influence of cetyltrimethylammonium bromide on the morphology of AWO4(A=Ca, Sr) prepared by cyclic microwave irradiation [J]. Appl. Surf. Sci., 2008, 254(23):7765-7769.[13] Wang Y, Ma J, Tao J, et al. Synthesis of CaWO4 nanoparticles by a molten salt method [J]. Mater. Lett., 2006, 60(2):291-293.[14] Luo Z, Li H, Xia J, et al. Controlled synthesis of different morphologies of BaWO4 crystals via a surfactant-assisted method [J]. J. Cryst. Growth, 2007, 300:523-529.[15] Sun L, Cao M, Wang Y, et al. The synthesis and photoluminescent properties of calcium tungstate nanocrystals [J]. J. Cryst. Growth, 2006, 289:231-235.[16] Tanaka K, Fukui K, Ohga K, et al. CaWO4 thin films synthesized by pulsed laser deposition [J]. J. Vac. Sci. Technol. A, 2002, 20(2):486-491.[17] Chen Z, Gong Q, Zhu J, et al. Controllable synthesis of hierarchical nanostructures of CaWO4 and SrWO4 via a facile low-temperature route [J]. Mater. Res. Bull., 2009, 44:45-50.[18] Shi H, Qi L, Ma J, et al. Synthesis of single crystal BaWO4 nanowires in catanionic reverse micelles [J]. Chem. Commun., 2002, 16:1704-1705.[19] Tian Y, Chen B, Yu H, et al. Controllable synthesis and luminescent properties of three-dimensional nanostructured CaWO4:Tb3+ microspheres [J]. J. Colloid Interf. Sci., 2011, 360(2):586-592.[20] Bao K, Guo G, Sun H, et al. Controlled synthesis of calcium tungstate microstructures with different morphologies in an AOT/TEA/H2O system [J]. Asian J. Chem., 2011, 23:1531-1534.[21] Phuruangrat A, Thongtem T, Thongtem S. Synthesis, characterization and photoluminescence properties of nanocrystalline calcium tungstate [J]. J. Exp. Nanosci., 2010, 5(3):263-270.[22] Xing Y, Song S, Feng J, et al. Microemulsion-mediated solvothermal synthesis and photoluminescent property of 3D flowerlike MnWO4 micro/nanocomposite structure [J]. Solid State Sci., 2008, 10(10):1299-1304.[23] Ray S, Pramanik P. Optical properties of nanocrystalline Y2O3:Eu3+ [J]. J. Appl. Phys., 2005, 97(9):094312-1-5.[24] Judd B. Optical absorption intensities of rare-earth ions [J]. Phys. Rev., 1962, 127(3):750-761.[25] Ofelt G. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys., 1962, 37(3):511-520.[26] Wang G, Qin W, Zhang J, et al. Synthesis and spectral properties of Eu3+-doped YF3 nanobundles [J]. J. Fluorine Chem., 2008, 129(1):621-624.