LI Qing-fang, HU Ge, YAO Jing, ZHANG Shuang, WEI Sheng, FENG Wen-jiang. Effects of Zn Vacancy and Cu-doping Impurity on Electronic Structure and Optical Properties in ZnTe[J]. Chinese Journal of Luminescence, 2013,34(9): 1135-1143
LI Qing-fang, HU Ge, YAO Jing, ZHANG Shuang, WEI Sheng, FENG Wen-jiang. Effects of Zn Vacancy and Cu-doping Impurity on Electronic Structure and Optical Properties in ZnTe[J]. Chinese Journal of Luminescence, 2013,34(9): 1135-1143 DOI: 10.3788/fgxb20133409.1135.
Effects of Zn Vacancy and Cu-doping Impurity on Electronic Structure and Optical Properties in ZnTe
Calculation and detailed analysis were carried out to investigate the lattice parameter and defect formation energy of perfect zinc blend ZnTe
that with impurity Cu(Zn
0.875
Cu
0.125
Te) and that with Zn vacancies (Zn
0.875
Te) using the plane-wave ultrasoft pseudopotential method based on density function theory and generalized gradient approximation. We obtained the band structure
density of states
Mulliken populations
dielectric function
absorption spectrum
refractive index
reflectivity
optical conductivity and loss function of the three systems. The results show that Zn vacancy and Cu impurity have certain influence on the lattice parameters
energy band structure and optical properties. The volumes of defect systems decrease and the lattice parameters are changed to some extent compared to perfect ZnTe. The band gap decreases
providing a n-type conductivity to the top of the valence band of the acceptor levels due to the vacancy and introduction of impurity level. Moreover
the optical properties of ZnTe are improved as the absorption spectra show a remarkable redshift and the electron transition of the defect systems in the visible region are enhanced apparently accompanied with appearance of dielectric peaks.
关键词
Keywords
references
Xia Z Q, Li R P. First principles study of rare earth doped in ZnTe used for CdTe solar cell back contact layer [J]. Acta Phys. Sinica (物理学报), 2012, 61(1):0171081-071086 (in Chinese).[2] Kim J S, Kim H M, Park H L, et al. Growth and optical characterization of single quantum well structure of submonolayer ZnS/ZnTe [J]. Solid State Commun., 2006, 137(3):115-119.[3] Erlacher A, Ambrico M, Perna G, et al. Absorption and photoconductivity properties of ZnTe thin films formed by pulsed-laser deposition on glass [J]. Appl. Surf. Sci., 2005, 248(1-4):402-405.[4] Joshi K B, Pandya R K, Kothari R K, et al. Electronic structure of BeTe and ZnTe [J]. Phys. Status Solidi (b), 2009, 246(6):1268-1274.[5] Zhou X H, Chen X S, Huang Y, et al. First-principles study of carrier-mediated ferromagnetism in ZnTe-based thin film [J]. Phys. Stat. Sol. (b), 2006, 243(6):1375-1382.[6] Szwacki N G, Prze?dziecka E, Dynowska E, et al. Structural properties of MnTe, ZnTe, and ZnMnTe [J]. Acta Phys. Pol. (a), 2004, 106(2):233-238.[7] Uspenskiia Y, Kulatovb E, Mariettec H, et al. Ab initio study of the magnetism in GaAs, GaN, ZnO, and ZnTe-based diluted magnetic semiconductors [J]. J. Magn. Magn. Mater., 2003, 258-259:248-250.[8] Tablero C. Acceptor and donor ionization energy levels in O-doped ZnTe [J]. Comput. Mater. Sci., 2010, 49(2):368-371.[9] Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation:Ideas, illustrations and the CASTEP code [J]. J. Phys.: Condens. Matter., 2002, 14(11):2717-2744.[10] Liu X, Furdyna J K. Optical dispersion of ternary Ⅱ-Ⅵ semiconductor alloys [J]. J. Appl. Phys., 2004, 95(12):7754-7765.[11] Han D, West D, Li X B, et al. Impurity doping in SiO2:Formation energies and defect levels from first-principles calculations [J]. Phys. Rev. B, 2010, 82(15):155132-155138.[12] Guo L, Hu G, Zhang S T. Defects energetic, electronic structure and optical properties of Cu-doping and Zn vacancy impurities in ZnSe [J]. Acta Phys.-Chim. Sinica (物理化学学报), 2012, 28(1):1-9 (in English).[13] Zhang Z Y, Yang D L, Liu Y H, et al. Electronic structures and optical properties of BaTiO3 [J]. Acta Phys.-Chim. Sinica (物理化学学报), 2009, 25(9):1731-1736 (in Chinese).[14] Zhao F J, Xie Q, Chen Q, et al. First principles calculation of BaSi2 electronic structure and optical properties [J]. Science in China (Series G: Physics, Mechanics & Astronomy)(中国科学G辑: 物理学 力学 天文学), 2009, 39(2):260-266 (in Chinese).[15] Feng J, Xiao B, Chen J C, et al. Optical properties of new photovoltaic materials:AgCuO2 and Ag2Cu2O3 [J]. Solid State Commun., 2009, 149:1569-1573.[16] He K H, Yu F, Ji G F, et al. Study of optical properties and electronic structure of V in ZnS by first principles [J]. Chin. J. High Pressure Phys.(高压物理学报), 2006, 20(1):56-60 (in Chinese).[17] Li J H, Zeng X H, Ji Z H, et al. Electronic structure and optical properties of Ag-doping and Zn vacancy impurities in ZnS [J]. Acta Phys. Sinica (物理学报), 2011, 60(5):0571011-1-7 (in Chinese).[18] Reuter K, Stampfl C, Scheffler M. Handbook of Materials Modeling:Part A Methods [M]. Berlin: Springer, 2005, 149-234.[19] Gao H X, Xia J B. Effect of Li-doping on the magnetic properties of ZnO with Zn vacancies [J]. J. Appl. Phys., 2012, 111(9):093902-1-5.[20] Muscat J, Harrison N M, Thornton G. First-principles study of potassium adsorption on TiO2 surfaces [J]. Phys. Rev. B, 1999, 59(23):15457-15463.[21] Wei S H, Zunger A. Role of metal d states in Ⅱ-Ⅵ semiconductors [J]. Phys. Rev. B, 1988, 37(15):8958-8981.[22] Mulliken R S. Electronic population analysis on LCAO-MO molecular wave functions [J]. J. Chem. Phys., 1955, 23(10):1833-1840.[23] Segall M D, Shah R, Pickard C J, et al. Population analysis of plane-wave electronic structure calculations of bulk materials [J]. Phys. Rev. B, 1996, 54(23):16317-16320.