CAO Yan-juan, YAN Zu-wei, SHI Lei. Effect of Band Bending on The Bound Polaron in A GaN/Ga<sub>1-<em>x</em></sub>Al<sub><em>x</em></sub>N Spherical Finite-potential Quantum Dot Under Pressure[J]. Chinese Journal of Luminescence, 2013,34(9): 1128-1134
CAO Yan-juan, YAN Zu-wei, SHI Lei. Effect of Band Bending on The Bound Polaron in A GaN/Ga<sub>1-<em>x</em></sub>Al<sub><em>x</em></sub>N Spherical Finite-potential Quantum Dot Under Pressure[J]. Chinese Journal of Luminescence, 2013,34(9): 1128-1134 DOI: 10.3788/fgxb20133409.1128.
Effect of Band Bending on The Bound Polaron in A GaN/Ga1-xAlxN Spherical Finite-potential Quantum Dot Under Pressure
N spherical finite-potential quantum dot under hydrostatic pressure is investigated by using a triangular potential to approximate the band bending of the interface potential. We performed numerical calculation on the binding energy of the electron-phonon and ion-phonon interactions. The binding energy of a bound polaron is compared with the case of square potential. The results show that the binding energy of bound polaron decreases with the increasing of electron areal density. We observed that the binding energy closes to the different values of electron areal density
n
s
=(6.0
8.0)10
11
/cm
2
when the dot radius
R
>
10 nm. The ion-phonon interactions play a major role in the polaronic effect.
关键词
Keywords
references
Mora-Ramos M E, Lopez S Y, Duque C A. A variational method for the description of the pressure-induced -X mixing in GaAs-based quantum wells [J]. Phys. E, 2008, 40(5):1212-1213.[2] Helm M, Peeters F M, De Rosa F, et al. Far-infrared spectroscopy of minibands and confined donors in GaAs/AlxGa1-xAs superlattices [J]. Phys. Rev. B, 1991, 43(17):13983-13991.[3] Correa J D, Porras-Montenegro N, Duque C A. Binding energy and photoionization cross-section in GaAs quantum well-wires and quantum dots: Magnetic field and hydrostatic pressure effects [J]. Braz. J. Phys., 2006, 36(2A):387-390.[4] Kasapoglu E, Yesilgul U, Sari H, et al. The effect of hydrostatic pressure on the photoionization cross-section and binding energy of impurities in quantum-well wire under the electric field [J]. Phys. B, 2005, 368(1-4):76-81.[5] Li S S, Xia J B. Electronic states of a hydrogenic donor impurity in semiconductor nanostructures [J]. Phys. Lett. A, 2007, 366(1-2):120-123.[6] John P A. The effect of hydrostatic pressure on binding energy of impurity states in spherical quantum dots [J]. Phys. E, 2005, 28(3):225-229.[7] Porras-Montenegro N, Prez-Merchancano S T. Binding energies and density of impurity states in spherical GaAs-GaAlAs quantum dots [J]. J. Appl. Phys., 1993, 74(12):7624-7626.[8] Vartanian A L, Vardanyan L A, Kazaryan E M. Hydrogenic impurity bound polaron in a cylindrical quantum dot in an electric field [J]. Phys. Lett. A, 2007, 360(4-5):649-654.[9] Huangfu Y F, Yan Z W. Bound polaron in a spherical quantum dot under an electric field [J]. Phys. E, 2008, 40(9):2982-2987.[10] Zher Samak, Bassam Saqqa. The optical polaron versus the effective dimensionality in quantum well systems [J]. An-Najah Univ. J. Res. (N.Sc.), 2010, 24(1):55-70.[11] Melnikov D V, Fowler W B. Electron-phonon interaction in a spherical quantum dot with finite potential barriers: The Frhlich Hamiltonian [J]. Phys. Rev. B, 2001, 64(24):5320-5328.[12] Kandemir B S, Altanhan T. Polaron effects on an anisotropic quantum dot in a magnetic field [J]. Phys. Rev. B, 1999, 60(7):4834-4849.[13] Comas F, Trallero-Giner C. Interface optical phonons in spherical quantum-dot/quantum-well heterostructures [J]. Phys. Rev. B, 2003, 67(11):115301-115307.[14] Satori H, Sali A, Satori K. Polarizability of a polaron in spherical quantum dots [J]. Phys. E, 2002, 14(1-2):184-189.[15] Zhang M, Yan Z W. Interface effect on the impurity state in a GaN/Ga1-xAlxN quantum dot under pressure [J]. Chin. J. Lumin.(发光学报), 2009, 30(4):529-534 (in Chinese).[16] Cao Y J, Yan Z W. Effect of band bending on the impurity state in GaN/AlxGa1-xN spherical finite potential quantum dot under pressure [J]. J. Inner Mongolia University, 2013, 44(1):36-42.[17] Sing J. Quantum Mechanics [M]. New York: Wiley-Inter Science Publication, 1997.[18] Platzman P M. Ground state energy of bound polarons [J]. Phys. Rev., 1962, 125(6):1961-1965.[19] Ting D Z Y, Chang Y C. Mixing in GaAs/AlxGa1-xAs and AlxGa1-xAs/AlAs supperlattices [J]. Phys. Rev. B, 1987, 36(8):4359-4374.[20] Yan Z W, Ban S L, Liang X X. Effect of electron-phonon interaction on surface states in zinc-blende GaN, AlN, and InN under pressure [J]. Eur. Phys. J. B, 2003, 35(1):41-47.[21] Goni A R, Syassen K, Cardona M. Effect of pressure on the refractive index of Ge and GaAs [J]. Phys. Rev. B, 1990, 41(14):10104-10110.[22] Shi L, Yan Z W. Exciton in a strained (001)-oriented zinc-blende GaN/AlxGa1-xN ellipsoidal finite-potential quantum dot under hydrostatic pressure [J]. Phys. Stat. Sol. C, 2011, 8(1):42-45.[23] Sadeghi E. Impurity binding energy of excited states in spherical quantum dot [J]. Phys. E, 2009, 41(7):1319-1322.[24] Christensen N E, Gorczyca I. Optical and structural properties of Ⅲ-V nitrides under pressure [J]. Phys. Rev. B, 1994, 50(7):4397-4415.[25] Bose C, Sarkar C K. Binding energy of impurity states in spherical GaAs/Ga1-xAlxAs quantum dots [J]. Phys. Stat. Sol. (b), 2000, 218(2):461-469.[26] Zhao G J, Liang X X, Ban S L. Binding energies of donors in quantum wells under hydrostatic pressure [J]. Phys. Lett. A, 2003, 319(1-2):191-197.
Interface Effect on the Impurity State in a GaN/Ga1-xAlxN Quantum Dot under Pressure
Historical Evolution and Current Status of Key Materials and Technologies in Inkjet-printed Quantum Dot Electroluminescent Displays
Research Progresses on Infrared Superluminescent Diodes
Progress on Modulation Bandwidth of Quantum-dot LED in Visible Light Communication
Synthesis and Conversion Efficiency Optimization of Quantum Dots Layer for Full-color Micro-LED Display
Related Author
ZHANG Min
YAN Zu-wei
LUO Xin
SUN Zhiguo
XU Bo
LIU Chen
WEI Changting
ZENG Haibo
Related Institution
Shoole of Physics Science and Technology, Inner Mongolia University
College of Physics and Electron Information, Inner Mongolia Normal University
Department of Physics, Inner Mongolia Agricultural University
School of Chemistry and Chemical Engineering, Anshun University
MIIT Key Laboratory of Advanced Display Materials and Devices, Jiangsu Engineering Research Center for Quantum Dot Display, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology