SONG Shi-wei, LIANG Hong-wei, SHEN Ren-sheng, LIU Yang, ZHANG Ke-xiong, XIA Xiao-chuan, DU Guo-tong. Influence of <em>In-situ</em> SiN<sub><em>x</em></sub> Interlayer on Strain Relief and Optical Character of GaN Epilayer Grown on 6H-SiC[J]. Chinese Journal of Luminescence, 2013,34(8): 1017-1021
SONG Shi-wei, LIANG Hong-wei, SHEN Ren-sheng, LIU Yang, ZHANG Ke-xiong, XIA Xiao-chuan, DU Guo-tong. Influence of <em>In-situ</em> SiN<sub><em>x</em></sub> Interlayer on Strain Relief and Optical Character of GaN Epilayer Grown on 6H-SiC[J]. Chinese Journal of Luminescence, 2013,34(8): 1017-1021 DOI: 10.3788/fgxb20133408.1017.
Influence of In-situ SiNx Interlayer on Strain Relief and Optical Character of GaN Epilayer Grown on 6H-SiC
High quality GaN epilayers have been grown on 6H-SiC substrate by metal organic chemical vapor deposition (MOCVD) using an
in situ
porous SiN
x
interlayer. It was found that the SiN
x
interlayer played a very important role in strain relief and the enhancement of quality of GaN epilayer. Optical microscope studies revealed that the crack line density was reduced to 0.29 mm
-1
. Furthermore
the in-plane stress of 1.5810
-3
was measured by Raman spectra
representing a significant strain relief. The relaxation was assisted by the reduction of dislocation density. Finally
a linear coefficient characterizing the relationship between the band gap and the biaxial stress of the GaN epilayer was obtained.
关键词
Keywords
references
Nakamura S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes [J]. Science, 1998, 281(5379):956-961. [2] Jani O, Ferguson I, Honsberg C, et al. Design and characterization of GaN/InGaN solar cells [J]. Appl. Phys. Lett., 2007, 91(13):132117-1-3. [3] Martens M, Schlegel J, Vogt P, et al. High gain ultraviolet photodetectors based on AlGaN/GaN heterostructures for optical switching [J]. Appl. Phys. Lett., 2011, 98(21):211114-1-3. [4] Ng H M, Doppalapudi D, Moustakas T D, et al. The role of dislocation scattering in n-type GaN films [J]. Appl. Phys. Lett., 1998, 73(6):821-824. [5] Gmeinwieser N, Engl K, Gottfriedsen P, et al. Correlation of strain, wing tilt, dislocation density, and photoluminescence in epitaxial lateral overgrown GaN on SiC substrates [J]. J. Appl. Phys., 2004, 96(7):3666-3672. [6] Ponce F A, Krusor B S, Major J S, et al. Microstructure of GaN epitaxy on SiC using AlN buffer layers [J]. Appl. Phys. Lett., 1995, 67(3):410-412. [7] Fujito K, Kiyomi K, Mochizuki T, et al. High-quality nonpolar m-plane GaN substrates grown by HVPE [J]. Phys. Status Solidi (a), 2008, 205(5):1056-1059. [8] Kappers M J, Datta R, Oliver R A, et al. Threading dislocation reduction in (0001) GaN thin films using SiN</em>x interlayers [J]. J. Crystal Growth, 2007, 300(1):70-74. [9] Fareed R S Q, Yang J W, Zhang J, et al. Vertically faceted lateral overgrowth of GaN on SiC with conducting buffer layers using pulsed metalorganic chemical vapor deposition [J]. Appl. Phys. Lett., 2000, 77(15):2343-2346. [10] Romano L T, VandeWalle C G, Ager J W, et al. Effect of Si doping on strain, cracking, and microstructure in GaN thin films grown by metalorganic chemical vapor deposition [J]. J. Appl. Phys., 2000, 87(11):7745-7752. [11] Porowski S. Bulk and homoepitaxial GaN-growth and characterization [J]. J. Cryst. Growth, 1998, 189-190:153-158. [12] Ponce F A, Krusor B S, Major J S, et al. Microstructure of GaN epitaxy on SiC using AlN buffer layers [J]. Appl. Phys. Lett., 1995, 67(3):410-412. [13] Perlin P, Jauberthie C C, Itie J P, et al. Raman scattering and X-ray-absorption spectroscopy in gallium nitride under high pressure [J]. Phys. Rev. B, 1992, 45(1):83-89. [14] Davydov V Y, Averkiev N S, Goncharuk I N, et al. Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H-SiC [J]. J. Appl. Phys., 1997, 82(10):5097-5102. [15] Polian A, Grimsdich M, Grzegory I. Elastic constants of gallium nitride [J]. J. Appl. Phys., 1996, 79(6):3343-3344. [16] Taniyasu Y, Kasu M, Makimoto T. Threading dislocations in heteroepitaxial AlN layer grown by MOVPE on SiC (0001) substrate [J]. J. Cryst. Growth, 2007, 298:310-315. [17] Romanov A E, Speck J S. Stress relaxation in mismatched layers due to threading dislocation inclination [J]. Appl. Phys. Lett., 2003, 83(13):2569-2571. [18] Takeuchi M, Shimizu H, Kajitani R, et al. Al- and N-polar AlN layers grown on c-plane sapphire substrates by modified flow-modulation MOCVD [J]. J. Cryst. Growth, 2007, 305(2):360-365. [19] Tanaka S, Takeuchi M, Aoyagi Y. Anti-surfactant in III-nitride epitaxy-quantum dot formation and dislocation termination [J]. Jpn. J. Appl. Phys., 2000, 39:L831-L834. [20] Yang D C, Liang H W, Song S W, et al. Improvement of the quality of a GaN epilayer by employing a SiN</em>x interlayer [J]. Chin. Phys. Lett., 2012, 29(10):088102-1-4. [21] Sun X Y, Bommena R, Burckel D, et al. Defect reduction mechanisms in the nanoheteroepitaxy of GaN on SiC [J]. J. Appl. Phys., 2004, 95(3):1450-1454.
Influence of AlGaAs Insertion Structure on Luminescence Characteristics of InAlGaAs/AlGaAs Multiple Quantum Wells
Luminescence Mechanism in Green InGaN/GaN LED with An Insertion Layer Between The Multiple Quantum Wells and n-GaN Layer
The Influence of SiN Passivation Layer to the GaN Based Blue LED on Si Substrate
Related Author
MA Xiaohui
LYU Minghui
WANG Zhensheng
GAN Lulu
WANG Dengkui
WANG Haizhu
ZHAO Shucun
LIU Yang
Related Institution
State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology
Research Institute of Chongqing, Changchun University of Science and Technology
College of Electronic Science and Engineering, Jilin University
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
Engineering Research Center for Lum inescence Materials and Devices of the Education Ministry, Nanchang University