LIU Ren-jun, LI Tian-tian, YANG Hao-yu, WANG Lian-kai, LYU You, ZHANG Bao-lin. Effect of Growth Temperature on Size Distribution of GaSb/GaAs Quantum Dots[J]. Chinese Journal of Luminescence, 2013,34(8): 1011-1016
LIU Ren-jun, LI Tian-tian, YANG Hao-yu, WANG Lian-kai, LYU You, ZHANG Bao-lin. Effect of Growth Temperature on Size Distribution of GaSb/GaAs Quantum Dots[J]. Chinese Journal of Luminescence, 2013,34(8): 1011-1016 DOI: 10.3788/fgxb20133408.1011.
Effect of Growth Temperature on Size Distribution of GaSb/GaAs Quantum Dots
The GaSb/GaAs quantum dots (QDs) were prepared by the technique of low pressure metalorganic chemical vapor deposition (LP-MOCVD). Based on analysis of samples for different growth temperatures
it turns out that the growth temperatures have little contribution to the morphology of GaSb/GaAs QDs and the shape of GaSb/GaAs QDs turns to be lens. The stress distributions between GaSb/GaAs interface lead to the "self-limiting" formation of GaSb QDs. Besides
due to discontinuous chemical potential of QDs
coupled with the effect of curing mechanism of Ostwald
the size distribution of QDs in certain range is discrete and two modes of QDs size appear. The surface mobility of antimony (Sb) adatoms has an important influence on the growth of GaSb/GaAs QDs. The discreteness of QDs can be efficiently improved by raising the growth temperature. With the process of heating up
the curing process of QDs can be presented.
关键词
Keywords
references
Mowbray D J, Skolnick M S. New physics and devices based on self-assembled semiconductor quantum dots [J]. J. Phys. D: Appl. Phys., 2005, 38(13):2059-2076.[2] Tatebayashi J, Khoshakhlagh A, Huang S H, et al. Lasing characteristics of GaSb/GaAs self-assembled quantum dots [J]. Appl. Phys. Lett., 2007, 90(26):261115-1-3.[3] Lin W H, Tseng C C, Chao K P, et al. High-temperature operation GaSb/GaAs quantum dots infrared photodetectors [J]. IEEE Photon. Technol. Lett., 2011, 23(2):106-108.[4] Kang P, Liu R B, Wang S, et al. Advance in quantum dot solar cells [J]. Chin. J. Power Sources (电源技术), 2011, 35(8):1019-1024 (in Chinese).[5] Seifert W, Carlsson N, Miller M, et al. In-situ growth of quantum dot structures by the Stranski-Krastanow growth mode [J]. Prog. Cryst. Growth Charact., 1996, 33(4):423-471.[6] Daruka I, Barabsi A L. Dislocation-free island formation in heteroepitaxial growth: A study at equilibrium [J]. Phys. Rev. Lett., 1997, 79(19):3708-3711.[7] Chao J, Hiroyuki S. Sb/As intermixing in self-assembled GaSb/GaAs type Ⅱ quantum dot systems and control of their photoluminescence spectra [J]. Phys. E, 2005, 26(4):180-184.[8] Balakrishnan G, Tatebayashi J, Khoshakhlagh A, et al. Ⅲ/Ⅴ ratio based selectivity between strained Stranski-Krastanov and strain-free GaSb quantum dots on GaAs [J]. Appl. Phys. Lett., 2006, 89(16):161104-1-3.[9] Kamarudin M A, Hayne M, Zhuang Q D, et al. GaSb quantum dot morphology for different growth temperatures and the different growth temperatures and the dissolution effect of the GaAs capping layer [J]. J. Phys. D: Appl. Phys., 2010, 43(6):065402-1-5.[10] Stringfellow G B, Shurtleff J K, Lee R T, et al. Surface processes in OMVPE the frontiers [J]. J. Cryst. Growth, 2000, 221(4):1-11.[11] Wang J P, Zhou W M, Wang C Y, et al. Morphologies of epitaxial islands on a lattice-misfitted substrate [J]. Chin. Phys. B, 2008, 17(8):3008-3013.[12] Daruka I, Tersoff J, Barabasi A L. Shape transition in growth of strained islands [J]. Phys. Rev. Lett., 1999, 82(13):2753-2756.[13] Ross F M, Tersoff J, Tromp R M. Coarsening of self-assembled Ge quantum dots on Si(001) [J]. Phys. Rev. Lett., 1998, 80(5):984-987.[14] Yang H B, Yu C Y, Liu Y M, et al. Analysis of influencing factor on growth semiconductor quantum dots [J]. J. Synth. Cryst.(人工晶体学报), 2004, 33(6):1018-1021 (in Chinese).[15] Wang T, Forchel A. Growth of self-organized GaSb islands on a GaAs surface by molecular beam epitaxy [J]. J. Appl. Phys., 1999, 85(5):2591-2594.[16] Fu M, Song H, Jiang H, et al. Quantum dots accumulation phenomenon in the growth of mul-tilayer GaSb(QDs)/GaAs and their luminescence property [J]. Chin. J. Lumin.(发光学报), 2010, 31(6):859-863 (in Chinese).[17] Zhou W, Tang W, Lau K M. A strain relief mode at interface of GaSb/GaAs grown by metalorganic chemical vapor deposition [J]. Appl. Phys. Lett., 2011, 99(22):2219117-1-3.