GUANG Rong-feng, SUN Qian, LI Qin-qin, XU Ning. Co-precipitation Synthesis and Characterization of CaMoO<sub>4</sub>:Eu<sup>3+</sup>,Bi<sup>3+</sup>,Li<sup>+</sup> Red Phosphor[J]. Chinese Journal of Luminescence, 2013,34(8): 1000-1005
GUANG Rong-feng, SUN Qian, LI Qin-qin, XU Ning. Co-precipitation Synthesis and Characterization of CaMoO<sub>4</sub>:Eu<sup>3+</sup>,Bi<sup>3+</sup>,Li<sup>+</sup> Red Phosphor[J]. Chinese Journal of Luminescence, 2013,34(8): 1000-1005 DOI: 10.3788/fgxb20133408.1000.
Co-precipitation Synthesis and Characterization of CaMoO4:Eu3+,Bi3+,Li+ Red Phosphor
were synthesized by co-precipitation method. The crystal structure
morphology and luminescent properties were measured and studied in detail by X-ray diffraction (XRD)
scanning electron microscope (SEM)
Raman spectrum
and photoluminescence spectrophotometer (PL). The synthesized red phosphors of CaMoO
4
:Eu
3+
Bi
3+
Li
+
are scheelite structure
and the particle sizes are about 0.5~1 m. The relative luminous intensity of Ca
0.75
MoO
4
:Eu
0.25-
x
3+
Bi
x
3+
is significantly higher than Ca
0.75
MoO
4
:Eu
0.25
3+
because Bi
3+
ions transmit the absorbed energy to Eu
3+
ions. When the doping mole fraction of Bi
3+
is 0.005
the relative luminous intensity of 616 nm main emission peak is the largest under the excitation of 395 nm. However
the phenomenon of concentration quenching occurs when Bi
3+
doping concentration is higher. In addition
the incorporation of charge compensation can solve the problem of charge imbalance caused by the isomorphous substitution. It is shown that the luminescence property of Ca
0.5
MoO
4
:Eu
3+
0.23
Bi
0.01
3+
Li
+
0.26
is significantly higher than Ca
0.75
MoO
4
:Eu
0.25
3+
Ca
0.5
MoO
4
:Eu
0.25
3+
Li
0.25
+
and Ca
0.75
MoO
4
:Eu
0.24
3+
Bi
0.01
3+
red phosphors.
关键词
Keywords
references
Yen W M, Shionoya S, Yamamoto H. Phosphor Handbook [M]. Boca Raton: CRC Press, 1996.[2] Kitai A. Luminescent Materials and Application [M]. New Jersey: Wiley, 2008.[3] Zhang M L, Wu C T, Lin K L, et al. Biological responses of human bone marrow mesenchymal stem cells to Sr-M-Si(M=Zn, Mg) silicate bioceramics [J]. J. Biomed. Mater. Res. A, 2012, 100A:2979-2990.[4] Li Z, Huang W. Three-dimensional flower-like Sr2MgSi2O7:Eu2+ blue phosphor and its luminescene properties [J]. Funct. Mater.(功能材料), 2002, 18(43):2550-2553 (in Chinese).[5] Ji H M, Xie G J, Lv Y, et al. A new phosphor with flower-like structure and luminescent properties of Sr2MgSi2O7:Eu2+,Dy3+ long afterglow materials by sol-gel method [J]. J. Sol-Gel. Sci. Technol., 2007, 44(2):133-137.[6] Xu Y C, Chen D H. Combustion synthesis and photoluminescence of Sr2MgSi2O7:Eu2+,Dy3+ long lasting phosphor nanoparticles [J]. Ceram. Int., 2008, 34(8):2117-2120.[7] Zhai Y, You Z, Wang X, et al. Effects of charge compensators on structure and luminescent properties of Sr2MgSi2O7:Eu3+ red-light-emitting phosphors [J]. J. Chin. Ceram. Soc.(硅酸盐学报), 2011, 39(12):1877-1891 (in Chinese).[8] Tan X H. Fabrication and properties of Sr2MgSi2O7:Eu2+,Dy3+ nanostructures by an AAO template assisted co-deposition method [J]. J. Alloys Compd., 2009, 477(1-2):648-651.[9] Chen X, Li Y, Ai P, et al. Synthesis of blue long-lasting phosphorescent material Sr2MgSi2O7:Eu2+,Dy3+ by coprecipitation method [J]. Chin. J. Inorg. Chem.(无机化学学报), 2010, 26(1):79-83 (in Chinese).[10] Wu Q. Co-pricipitation-hydrothermal synthesis of stabilized Y-Ce-ZrO2 nano-powder [J]. J. Mater. Sci. Eng.(材料科学与工程学报), 2009, 22(4):519-522 (in Chinese).[11] Xia Z, Sun J, Li G, et al. Synthesis and analysis of novel solid state lighting compound Ca3SiO4Br2:Eu2+ [J]. Chin. J. Lumin.(发光学报), 2011, 32(10):988-992 (in Chinese).[12] Aitasalo T, Deren P, Hls J, et al. Persistent luminescence phenomena in materials doped with rare earth ions [J]. J. Solid State Chem., 2003, 171(1):114-122.[13] Liu Y, Lei B, Shi C. Luminescent properties of a white afterglow phosphor CdSiO3:Dy3+ [J]. Chem. Mater., 2005, 17(8):2108-2113.[14] Yang H C, Li C Y, Tao Y, et al. The luminescence of CaYBO4:RE3+ (RE= Eu, Gd, Tb, Ce) in VUV-visible region [J]. J. Lumin., 2007, 126(1):196-202.[15] Su Q, Liang H B, Li C Y, et al. Luminescent materials and spectroscopic properties of Dy3+ ion [J]. J. Lumin., 2007, 122-123:927-930.[16] Li K Y, Xue D F. A new set of electronegativity scale for trivalent lanthanides [J]. Phys. Status Solidi (b), 2007, 244:1982-1987.[17] Huang P, Yang F, Cui C, et al. Effect of doping ions on properties of the white-light long-lasting phosphor Y2O2S:Tb3+, Eu3+, M2+(M=Mg, Ca, Sr, Ba), Zr4+ [J]. Chin. J. Lumin.(发光学报), 2013, 34(3):262-267 (in Chinese).[18] Lu X, Xiao Z, Zhang X, et al. Eu, Dy co-doped long-lasting luminescence glass [J]. Chin. J. Lumin.(发光学报), 2005, 26(6):819-822 (in Chinese).[19] Qin J, Lei B, Li J, et al. Temperature-dependent long-lasting phosphorescence in SrSi2O2N2:Eu2+ [J]. ECS J. Solid State Sci. Technol., 2013, 2(3):R60-R64.[20] Li J, Lei B, Qin J, et al. Temperature-dependent emission spectra of Ca2Si5N8:Eu2+,Tm3+ phosphor and its afterglow properties [J]. J. Am. Ceram. Soc., 2013, 96(3):873-878.