WANG Ling-chang, LU Qi-fei, LI Jian, WANG Da-jian. Effect of Microwave on Energy Transfer of Mn<sup>2+</sup> 660 nm-emitting in (Ba,Sr)<sub>3</sub>MgSi<sub>2</sub>O<sub>8</sub>:Eu<sup>2+</sup>,Mn<sup>2+</sup> Phosphor[J]. Chinese Journal of Luminescence, 2013,34(8): 976-981
WANG Ling-chang, LU Qi-fei, LI Jian, WANG Da-jian. Effect of Microwave on Energy Transfer of Mn<sup>2+</sup> 660 nm-emitting in (Ba,Sr)<sub>3</sub>MgSi<sub>2</sub>O<sub>8</sub>:Eu<sup>2+</sup>,Mn<sup>2+</sup> Phosphor[J]. Chinese Journal of Luminescence, 2013,34(8): 976-981 DOI: 10.3788/fgxb20133408.0976.
Effect of Microwave on Energy Transfer of Mn2+ 660 nm-emitting in (Ba,Sr)3MgSi2O8:Eu2+,Mn2+ Phosphor
phosphor was synthesized by using 2.45 GHz high temperature microwave (MW) at a given firing temperature. The microwave non-thermal effect on the photoluminescence intensity of 660 nm emission was investigated. With an increase of MW power supply to reach an identical holding firing temperature
non-thermal MW effect leads to increasing transition probability of Eu
2+
blue emission and indirect transition probability of Mn
2+
red band emission with aid of energy transfer from Eu
2+
via
(Ba
Sr)
3
MgSi
2
O
8
host lattice. A modified energy level diagram was proposed to address this disturbing issue of MW energy attribute. This non-thermal MW effect suggests that a strong magnetic field may apply a disturbance effect on the structure and transition properties of the paramagnetic ions like Mn activator in microwave firing procedure.
关键词
Keywords
references
Schubert E F, Kim J K. Solid-state light sources getting smart [J]. Science, 2005, 308(5726):1274-1278.[2] Ma L, Wang D J, Mao Z Y, et al. Investigation of Eu-Mn energy transfer in A3MgSi2O8:Eu2+,Mn2+ (A=Ca, Sr, Ba) for light-emitting diodes for plant cultivation [J]. Appl. Phys. Lett., 2008, 93(14):144101-1-3.[3] Emerson R, Chalmers R, Cederstrand C. Some factors influencing the long-wave limit of photosynthesis [J]. Proc. Natl. Acad. Sci. USA, 1957, 43(1):133-143.[4] Maranowski S A, Camras M D, Chen C, et al. High-performance AlGaInP light-emitting diodes [J]. SPIE, 1997, 3002:110-118.[5] Wang X J, Jia D D, Yen W M. Mn2+ activated green, yellow, and red long persistent phosphors [J]. J. Lumin., 2003, 102:34-37.[6] Lei B F, Liu Y L, Ye Z, et al.Luminescence properties of CdSiO3:Mn2+ phosphor [J]. J. Lumin., 2004, 109(3-4):215-219.[7] Kim J S, Jeon P E, Park Y H, et al. White-light generation through ultraviolet-emitting diode and white-emitting phosphor [J]. Appl. Phys. Lett., 2004, 85(17):3696-3698.[8] Duan C J, Delsing A C A, Hintzen H T. Photoluminescence properties of novel red-emitting Mn2+-ativated MZnOS(M=Ca, Ba) phosphors [J]. Chem. Mater., 2009, 21(6):1010-1016.[9] Chakradhar R P S, Nagabhushana B M, Chandrappa G T, et al. Solution combustion derived nanocrystalline Zn2SiO4:Mn phosphors: A spectroscopic view [J]. J. Chem. Phys., 2004, 121(20):10250-10259.[10] Lee D Y, Kang Y C, Park H D, et al. VUV characteristics of BaAl12O19:Mn2+ phosphor particles prepared from aluminum polycation solutions by spray pyrolysis [J]. J. Alloys Compd., 2003, 353(1-2):252-256.[11] Hattori Y, Isobe T, Takahashi H, et al. Luminescent properties of ZnS:Mn2+ nanocrystals/SiO2 hybrid phosphor synthesized by in situ surface modification co-precipitation [J]. J. Lumin., 2005, 113(1-2):69-78.[12] Agrawal D. Latest global developments in microwave materials processing [J]. Mater. Res. Innov., 2010, 14(1):3-8.[13] Blasse G, wanmaker W L. Fluorescence of Eu2+ activated silicates [J]. Philips Res. Repts, 1968, 23:189-200.[14] Yonesaki Y, Takei T, Kumada N, et al. Crystal structure of Eu2+-doped M3MgSi2O2 (M:Ba, Sr, Ca) compounds and their emission properties [J]. J. Solid State Chem., 2009, 182(3):547-554.[15] Park C H, Hong S T, Keszler D A. Superstructure of a phosphor material Ba3MgSi2O8 determined by neutron diffraction data [J]. J. Solid State Chem., 2009, 182(3):496-501.[16] Im W B, Kim Y I, Yoo H S, et al. Luminescent and structural properties of (Sr1-x,Bax)3MgSi2O8: Eu2+: Effects of Ba content on the Eu2+ site preference for thermal stability [J]. Inorg. Chem., 2009, 48(2):557-564.[17] Yonesaki Y, Takei T, Kumada N, et al. Crystal structure of BaCa2MgSi2O8 and the photoluminescent properties activated by Eu2+ [J]. J. Lumin., 2008, 128(9):1507-1514.[18] Aitasalo T, Hietikko A, Holsa J, et al. Crystal structure of the Ba3MgSi2O8:Mn2+,Eu2+ phosphor for white light emitting diodes [J]. Zeitschrift fr Kristallographie, 2007, 26(z1):461-466.[19] Ma L, Wang D J, Zhang H M, et al. The origin of 505 nm-peaked photoluminescence from Ba3MgSi2O8:Eu2+,Mn2+ phosphor for white-light-emitting diodes [J]. Electrochem. Solid-State Lett., 2008, 11(2):E1-E4.[20] Lu Q F, Li J, Wang D J. Cage-like phosphor spheres of Eu2+ and Mn2+ codoped Ba3MgSi2O8: Emission enhancement for artificial photosynthetic spectrum [J]. ECS Solid State Lett., 2012, 1(5):R24-R26.[21] Cai Y, Lu Q F, Qiu K, et al. Intensification of the photosynthetic action spectrum of Ba3MgSi2O8:Eu2+,Mn2+ phosphor with metal-enhanced fluorescence [J]. Electrochem. Solid-State Lett., 2012, 15(2):1-4.[22] Li J, Lu Q F, Wang D J. Single-phased silicate-hosted phosphor with 660 nm-featured band emission for biological light-emitting diodes [J]. Curr. Appl. Phys., 2013, available online.[23] Barry T L. Equilibria and Eu2+ luminescence of subsolidus phases bounded by Ba3MgSi2O8, Sr3MgSi2O8 and Ca3MgSi2O8 [J]. J. Electrochem. Soc.: Solid State Sci., 1968, 115:733-738.[24] Okamoto S, Nanba Y, Honma T, et al. Ba-substitution effect on luminescent properties and thermal degradation of Sr3MgSi2O8:Eu2+ blue phosphor under vacuum-UV-light exciation [J]. Electrochem. Solid-State Lett., 2008, 11(1):147-149.[25] Booske J H. Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids [J]. J. Mater. Res., 1992, 7(2):495-501.