ZHENG Gai-ge, ZHAN Yu, CAO Kun, XU Lin-hua. Fabrication of Subwavelength Metal Grating and Analysis with Vector Diffraction Theory[J]. Chinese Journal of Luminescence, 2013,34(7): 935-939
ZHENG Gai-ge, ZHAN Yu, CAO Kun, XU Lin-hua. Fabrication of Subwavelength Metal Grating and Analysis with Vector Diffraction Theory[J]. Chinese Journal of Luminescence, 2013,34(7): 935-939 DOI: 10.3788/fgxb20133407.0935.
Fabrication of Subwavelength Metal Grating and Analysis with Vector Diffraction Theory
We fabricated a subwavelength metallic grating using nanoimprint technology and mea-sured the reflection spectrum using ultraviolet-visible-near-infrared spectrophotometer. Based on the theory of conventional rigorous coupled wave analysis
we used a new method to analyze the diffraction problems of subwavelength metallic gratings. We used fast Fourier factorization (FFF) method to derive the coupled wave equations
then each space harmonic can be expanded in terms of Legendre polynomials in grating region. Using this modified vector diffraction theory
we calculated the diffraction efficiency and the field distribution. All calculated results show great agreement with the experimental results.
关键词
Keywords
references
Bai W L, Guo B S, Cai L K, et al. Simulation of light coupling enhancement and localization of transmission field via subwavelength metallic gratings[J]. Acta Phys. Sinica (物理学报), 2009, 58(11):8021-8026 (in Chinese).[2] Yang Z L, Fang W J, Yang Y Q. Two-photon-excited fluorescence enhancement caused by surface plasmon enhanced exciting light[J]. Chin. J. Lumin.(发光学报), 2013, 34(2):240-244 (in Chinese).[3] Han J, Fan Y C, Zhang Z R. Propagation of surface plasmon polaritons in a ring resonator with PT-symmetry[J]. Chin. J. Lumin.(发光学报), 2012, 33(8):901-904 (in Chinese).[4] Dinesh A, Sumet H, Prashant T, et al. Fabrication of compliant high aspect ratio silicon microelectrode arrays using micro-wire electrical discharge machining[J]. Microsyst. Technol., 2009, 15:789-797.[5] Zhang X W, Ning Y Q, Qin L, et al. Polarization control of 980 nm high-power vertical-cavity surface-emitting lasers by using sub-wavelength metal-gratings[J]. Chin. J. Lumin.(发光学报), 2012, 33(9):1012-1017 (in Chinese).[6] Xiao X X, Chen Y G. Investigation of optical wave coupling between two subwavelengh slits in metallic sheet[J]. Chin. J. Lumin.(发光学报), 2009, 30(5):682-686 (in Chinese).[7] Liu J, Liu J, Wang Y T, et al. Resonant properties of sub-wavelength metallic gratings[J]. Chin. Opt. (中国光学), 2011, 4(4):363-368 (in Chinese).[8] Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of planar-grating diffraction[J]. J. Opt. Soc. Am. A, 1981, 71(7):811-817.[9] Hooper I R, Sambles J R. Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces[J]. Phys. Rev. B, 2004, 70(4):045421-1-14.[10] Khavasi A, Jahromi A K, Mehrany K. Longitudinal Legendre polynomial expansion of electromagnetic fields for analysis of arbitrary-shaped gratings[J]. J. Opt. Soc. Am. A, 2008, 25(7):1564-1573.[11] Lynch D W. Hunter W R. Handbook of Optical Constants of Solids [M]. London: Academic Press, 1985:286-287.[12] Wang Y W, Liu M L, Liu R J, et al. Fabry-Perot resonance on extraordinary transmission through one-dimensional metallic gratings with sub-wavelength under transverse electric wave excitation[J]. Acta Phys. Sinica (物理学报), 2011, 60 (2): 024217 (in Chinese).