LI Guo-bin, CHEN Chang-shui, LIU Song-hao. Relationship Between In<sub><em>x</em></sub>Ga<sub>1-<em>x</em></sub>N Quantum-well Blue LED&rsquo;s Photoelectric Properties and Quantum Well Bound State Energy Level[J]. Chinese Journal of Luminescence, 2013,34(7): 911-917
LI Guo-bin, CHEN Chang-shui, LIU Song-hao. Relationship Between In<sub><em>x</em></sub>Ga<sub>1-<em>x</em></sub>N Quantum-well Blue LED&rsquo;s Photoelectric Properties and Quantum Well Bound State Energy Level[J]. Chinese Journal of Luminescence, 2013,34(7): 911-917 DOI: 10.3788/fgxb20133407.0911.
Relationship Between InxGa1-xN Quantum-well Blue LED’s Photoelectric Properties and Quantum Well Bound State Energy Level
The software simulation and theoretical calculations are used to analysis the relationship between In
x
Ga
1-
x
N quantum well blue LED's photoelectric properties and quantum well bound state energy level. A bound state split level model is established. When the quantum well thickness is narrower
the band bending caused by the polarization effects is the main reason for the spectral red-shift
and electron leakage is the main reason for efficiency droop. But as the well width increase
level filling is the main reason for the red-shift of spectrum
Auger recombination and carrier delocalization are the main reason for lower efficiency. By this article
the optimization quantum well width for InGaN/GaN light-emitting diodes can be obtained. The maximum internal quantum efficiency and luminous efficiency can be obtained when the optimization quantum well width is 2.5~3.5 nm.
关键词
Keywords
references
Li X, Okur S, Zhang F, et al. Improved quantum efficiency in InGaN light emitting diodes with multi-double-heterostructure active regions[J]. Appl. Phys. Lett., 2012, 101(4):041115-1-4.[2] Chen G C, Fan G H. Study on long-wavelength optical phonons in hexagonal InAlGaN crystals[J]. Chin. J. Lumin.(发光学报), 2012, 33(8):808-811 (in English).[3] Kioupakis E, Patrick R, Delaney K T, et al. Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes[J]. Appl. Phys. Lett., 2011, 98(16):161107-1-3.[4] Shen Y C, Mueller G O, Watanabe S, et al. Auger recombination in InGaN measured by photoluminescence[J]. Appl. Phys. Lett., 2007, 91(14):141101-1-3.[5] Delaney K T, Patrick R, Kioupakis E, et al. Auger recombination rates in nitrides from first principles[J]. Appl. Phys. Lett., 2009, 94(19):191109-1-3.[6] Joachim P, Li S. Electron leakage effects on GaN-based light-emitting diodes[J]. Opt. Quant. Electron., 2011, 42(2):89-95.[7] Pope I A, Smowton P M. Carrier leakage in InGaN quantum well light-emitting diodes emitting at 480 nm[J]. Appl. Phys. Lett., 2003, 82(17):2755-2757.[8] Mao A, Jaehee C. Reduction of efficiency droop in GaInN/GaN light-emitting diodes with thick AlGaN cladding layers[J]. Electron. Mater. Lett., 2012, 8(1):1-4.[9] Meyaard D S, Shan Q F, Dai Q, et al. On the temperature dependence of electron leakage from the active region of GaInN/GaN light-emitting diodes[J]. Appl. Phys. Lett., 2011, 99(4):041112-1-3.[10] Bulashevich K A, Karpov S Y. Is Auger recombination responsible for the efficiency rollover in Ⅲ-nitride light-emitting diodes?[J]. Phys. Status Solidi (c), 2008, 5(6):2066-2069.[11] Xie J Q, Xian F N, Qian F, et al. On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers[J]. Appl. Phys. Lett., 2008, 93(12):121107-1-3.[12] Kunzer M, Leancu C C, Maier M, et al. Well width dependent luminescence characteristics of UV-violet emitting GaInN QW LED structures[J]. Phys. Status Solidi (c), 2008, 5(6):2170-2172.[13] Reed M L, Readinger E D, Moe C G, et al. Benefits of negative polarization charge in n-InGaN on p-GaN single heterostructure light emitting diode with p-side down[J]. Phys. Status Solidi (c), 2009, 6(2):585-588.[14] Jaehee C, Euijoon Y, Wo J H, et al. Characteristics of blue and ultraviolet light-emitting diodes with current density and temperature[J]. Electron. Mater. Lett., 2010, 6(2):51-53.[15] Kim A Y, Steigerwald D A, Wierer J J, et al. Performance of high-power AlInGaN Light emitting diodes[J]. Phys. Status Solidi (a), 2001, 188(1):15-21.[16] Efremov A A, Bochkareva N I, Gorbunov R I, et al. Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs[J]. Semiconductors, 2006, 40(5):605-610.[17] Zeng K C, Li J Y, Lin H X, et al. Well-width dependence of the quantum efficiencies of GaN/AlxGa1-xN multiple quantum wells[J]. Appl. Phys. Lett., 2000, 76(21):3040-3042.[18] Smith M, Lin J Y, Jiang H X. Optical transitions in GaN/AlxGa1-xN multiple quantum wells grown by molecular beam epitaxy[J]. Appl. Phys. Lett., 1996, 69(17):2453-2455.[19] Mair R A, Zeng K C, Lin J Y. Optical properties of GaN/AlGaN multiple quantum well microdisks[J]. Appl. Phys. Lett., 1997, 71(20):2898-2900.[20] Li Y L, Huang Y R, Lai Y H. Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness[J]. Appl. Phys. Lett., 2007, 91(18):181113-1-3.[21] Wu J, Walukiewicz W, Yu K M, et al. Small band gap bowing in InxGa1-xN alloys[J]. Appl. Phys. Lett., 2002, 80(25):4741-4743.[22] Levinshtein M E, Rumyantsev S L, Shur M S. Properties of Advanced Semiconductor Materials [M]. Chichester, UK:Wiley, 2001:7-8.[23] Lu H M, Chen G X. Influence of polarization effect on optoelectronic properties of InGaN/GaN multiple quantum well[J]. Chin. J. Lumin.(发光学报), 2011, 32(3):266-271 (in Chinese).
The Effects of In Content on The LED Photoelectric Performance InGaN/GaN
Simulation and Design of High Efficiency InGaN/ AlInGaN Based Light-emitting Diodes
Performance of GaN-based Vertical Structure Light Emitting Diodes with Hybrid Quantum Wells
Performance Improvement of Blue InGaN Light-emitting Diode with A Special Designed Electron-blocking Layer
Effect of The Number of Quantum Wells on InGaN/AlGaN LED
Related Author
LIU Song-hao
CHEN Chang-shui
LI Guo-bin
ZHAO Ling-zhi
WANG Jia
ZHANG Hong-yan
PEI Lei-lei
SU Shi-chen
Related Institution
Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, South China Normal University
Institute of Optoelectronic Material and Technology, South China Normal University
Engineering Research Center for Optoelectronics of Guangdong Province, School of Physics and Optoelectronics, South China University of Technology
Institute of Opto-Electronic Materials and Technology, South China Normal University
Institute of Opto-electronic Materials and Technology, South China Normal University