ZHANG Wei, ZHANG Fang-hui, HUANG Jin. Effect of TCTA Layer on Exciton Positions of Red and Green Phosphorescent Organic Light Emitting Diodes[J]. Chinese Journal of Luminescence, 2013,34(7): 877-881
ZHANG Wei, ZHANG Fang-hui, HUANG Jin. Effect of TCTA Layer on Exciton Positions of Red and Green Phosphorescent Organic Light Emitting Diodes[J]. Chinese Journal of Luminescence, 2013,34(7): 877-881 DOI: 10.3788/fgxb20133407.0877.
Effect of TCTA Layer on Exciton Positions of Red and Green Phosphorescent Organic Light Emitting Diodes
(40 nm)/LiF(1 nm)/Al(100 nm). The luminescent properties were studied by inserting different thickness of TCTA (regulation of carrier) spacer layer between red and green emitting layer to adjust the distribution of carriers and excitons. The results showed that the optimum performance of OLED was achieved when the thickness of TCTA spacer layer is 1 nm. The maximum the device performance reached 13.72 cd/A
0.509 mA/cm
2
and 69.91 cd/m
2
at 6 V. While for 0 nm (none spacer)
the device performance reached 11.67 cd/A
1.848 mA/cm
2
and 215.7 cd/m
2
at 6 V.
关键词
Keywords
references
Xiao Y, Yang J P, Cheng P P, et al. Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles[J]. Appl. Phys. Lett., 2012, 100(1):013308-1-3.[2] Li Q, Zhao J, Wang Q, et al. Effect of spacer on white organic light-emitting devices consisted of double light-emitting layers[J]. Chin. J. Lumin.(发光学报), 2012, 33(1):45-49 (in Chinese).[3] Liu F L, Ruden P P, Camphell L H, et al. Exciplex current mechanism for ambipolar bilayer organic light emitting diodes[J]. Appl. Phys. Lett., 2011, 99(12):123301-1-3.[4] Yook K S, Kim O K, Lee J Y. Lifetime study of single layer and stacked white organic light-emitting diodes[J]. Synthetic Met., 2012, 161(10):2671-2681.[5] Han C M, Xie G H, Zhang Z S, et al. A single phosphine oxide host for high-efficiency white organic light-emitting diodes with extremely low operating voltages and reduced efficiency roll-off[J]. Adv. Funct. Mater., 2011, 23(4):2491-2496.[6] Zhang G H, Chou H H, Jiang X Q, et al. Highly efficient organic light-emitting diodes (OLEDs) based on an iridium complex with rigid cyclometalated ligand[J]. Org. Electron., 2010, 11(4):632-640.[7] Fang Z L. Semiconductor Lighting Technology [M] Beijing: Electronics Industry Press, 2010:164.[8] Moraes I R, Schol S, Lussem B, et al. Analysis of chemical degradation mechanism within sky blue phosphorescent organic light emitting diodes by laser-desorption/ionization time-of-flight mass spectrometry[J]. Org. Electron., 2011, 12(2):341-347.[9] Liu C B, Zhao J, Su B, et al. Research progress of Re (I) complexes in OLEDs[J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2012, 27(6):742-751 (in Chinese).[10] Ding L, Zhang F H, Ma Y, et al. Novel microcavity OLEDs with double hole injection layer[J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2011, 26(4):496-500 (in Chinese).[11] Seo H J, Yoo K M, Song M, et al. Deep-blue phosphorescent iridium complexes with picolinic acid N-oxide as the ancillary ligand for high efficiency organic light-emitting diodes[J]. Org. Electron., 2010, 11(4):564-572.[12] Seo C W, Yoon J H, Lee J Y. Engineering of charge transport materials for universal low optimum doping concentration in phosphorescent organic light-emitting diodes[J]. Org. Electron., 2012, 13(2):413-469.[13] Zhu H N, Xu Z, Zhao S L, et al. Influence of well structure on efficiency of organic light-emitting diodes[J]. Acta Phys. Sinica (物理学报), 2010, 59(11):8093-8096 (in Chinese).[14] Gao L Y, Zhao S L, Xu Z, et al. Luminescence characteristics of PVK doped with Ir(Fppy)3[J]. Spectrosc. Spect. Anal.(光谱学与光谱分析), 2011, 31(9):2328-2331 (in Chinese).