ZHANG Shang-hu, ZHOU Mei-jiao, YU Hua-qin, LI Shu-sheng, FANG Zhong-xin, ZHANG Jia-chi, WANG Yu-hua. Synthesis and Luminescence Properties of Green (Ce<sub>0.67</sub>,Tb<sub>0.33</sub>)MgAl<sub>11</sub>O<sub>19</sub> Phosphor by Flux Method[J]. Chinese Journal of Luminescence, 2013,34(7): 856-860
ZHANG Shang-hu, ZHOU Mei-jiao, YU Hua-qin, LI Shu-sheng, FANG Zhong-xin, ZHANG Jia-chi, WANG Yu-hua. Synthesis and Luminescence Properties of Green (Ce<sub>0.67</sub>,Tb<sub>0.33</sub>)MgAl<sub>11</sub>O<sub>19</sub> Phosphor by Flux Method[J]. Chinese Journal of Luminescence, 2013,34(7): 856-860 DOI: 10.3788/fgxb20133407.0856.
Synthesis and Luminescence Properties of Green (Ce0.67,Tb0.33)MgAl11O19 Phosphor by Flux Method
phosphor was synthesized by the flux method using different fluxes
and the luminescent properties of obtained samples were investigated in details. The influence of single flux and multi-fluxes on the brightness and morphology of particles was also studied. It is found that the optimal components of the multi-fluxes is 0.2%H
3
BO
3
+2.0%Li
2
CO
3
+2.0%AlF
3
(mass fraction). The particles of optimal (Ce
0.67
Tb
0.33
)MgAl
11
O
19
sample have regular and uniform morphology
and the rate of brightness of this sample to present commercial (Ce
0.67
Tb
0.33
)MgAl
11
O
19
phosphor is about 103:100.
关键词
Keywords
references
Zhang Q Y, Feng Z M, Yang Z M, et al. Energy transfer and infrared-to-visible upconversion luminescence of Er3+/Yb3+-codoped halide modified tellurite glasses[J]. J. Quant. Spectrosc. Radiat. Transfer., 2006, 98(2):167-179.[2] Zheng Z Q, Li X Y, Liu J, et al. Optical properties of Er3+/Yb3+-codoped transparent PLZT ceramic[J]. Phys. B, 2008, 403(1):44-49.[3] Guo H, Qiao Y M. Preparation, characterization, and strong upconversion of monodisperse Y2O3:Er3+,Yb3+ microspheres[J]. Opt. Mater., 2009, 31(4):583-589.[4] Li H, Yang K S, Qi N, et al. Preparation and luminescence properties of Yb3+/Er3+-codoped oxyfluoride glass ceramics[J]. Chin. Opt.(中国光学), 2011, 4(6):672-677 (in Chinese).[5] Liang H, Chen G, Liu H, et al. Ultraviolet upconversion luminescence enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals induced by tridoping with Li+ ions[J]. J. Lumin., 2009, 129(3):197-202.[6] Li Z H, Zheng L Z, Zhang L N, et al. Synthesis, characterization and upconversion emission properties of the nanocrystals of Yb3+/Er3+-codoped YF3-YOF-Y2O3 system[J]. J. Lumin., 2007, 126(2):481-486.[7] Wan J M. The research of IR-visible conversion seeking technology[D]. Harbin: Harbin Institute of Technology, 2007.[8] Meng Z, Nagamatsu K, Higashihata M, et al. Energy transfer mechanism in Yb3+:Er3+-ZBLAN:Macro-and micro-parameters[J]. J. Lumin., 2004, 106(3/4):187-194.[9] Federighi M, Di Pasquale F. The effect of pair-induced energy transfer on the performance of silica waveguide amplifiers with high Er3+/Yb3+ concentrations[J]. IEEE Photon. Technol. Lett., 1995, 7(3):303-305.[10] Kuhn H, Fechner M. Energy transfer in crystalline Er3+,Yb3+:Sc2O3[J]. Opt. Mater., 2009, 31(11):1636-1639.[11] Lu W L, Cheng L H. The concentration effect of upconversion luminescence properties in Er3+/Yb3+ codoped Y2(MoO4)3 phosphors[J]. Phys. B, 2010, 405(16):3284-3288.[12] Liu Y M. Luminescence properties of lead tungstate crystals codoped with erbium and ytterbium[D]. Harbin: Harbin Institute of Technology, 2009.[13] Groenink J A, Blasse G. Some new observations on the luminescence of PbMoO4 and PbWO4[J]. J. Solid State Chem., 1980, 32(1):9-20.[14] Blasse G, Bril A. On the Eu3+ fluorescence in mixed metal oxide Ⅲ:Energy transfer in Eu3+-activated tungstates and molybdates of the type Ln2WO6 and Ln2MoO6[J]. J. Chem. Phys., 1996, 45(7):2350-2355.[15] Fu Q K. Luminescence properties of rare earth ions doped molybdate and tungstate luminescent material. Guangzhou:Jinan University, 2011.[16] Yang Z P, Du H Y, Sun J Y. Synthetic methods and application of upconversion luminescence materials[J]. Beijing: New Chemical Materials (化工新型材料), 2009, 37(2):6-8,18 (in Chinese).
Luminescence Properties and Application of Ce3+ Doped Ba3Y2(BO3)4 Phosphor
Methods for Evaluating Hydrolytic Degradation of Mn4+-activated Fluoride Phosphors
Enhanced Near-infrared Ⅱ Emission in MgAlxGa2-xO4∶Ni2+ Phosphor via Al/Ga Ions Substitution
Regulating Near-infrared Luminescence of ZnGa2O4∶Cr3+via F/O Anion Substitution
Luminous Performance and Site-occupation Effect of Sr2InP3O11∶Eu3+ Red Phosphor
Related Author
SUN Xiaoyuan
LIU Chunmiao
LI Min
TIAN Wanlu
LOU Wenjing
LI Haoxiang
TAN Qinqin
LI Cheng
Related Institution
Department of Physics, Changchun Normal University
Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
School of Materials Science and Engineering, Zhengzhou University
School of Electrical Engineering and Intelligentization, Dongguan University of Technology
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University