LI Bing-sheng, SHEN Ai-dong. Optical Properties of Zn<sub><em>x</em></sub>Cd<sub>1-<em>x</em></sub>Se/MgSe Quantum Wells Grown on InP Substrate by Molecular Beam Epitaxy[J]. Chinese Journal of Luminescence, 2013,34(7): 811-815
LI Bing-sheng, SHEN Ai-dong. Optical Properties of Zn<sub><em>x</em></sub>Cd<sub>1-<em>x</em></sub>Se/MgSe Quantum Wells Grown on InP Substrate by Molecular Beam Epitaxy[J]. Chinese Journal of Luminescence, 2013,34(7): 811-815 DOI: 10.3788/fgxb20133407.0811.
Optical Properties of ZnxCd1-xSe/MgSe Quantum Wells Grown on InP Substrate by Molecular Beam Epitaxy
Se/MgSe heterostructure grown on (001) InP substrates by molecular beam epitaxy. In the single quantum well growth of Zn
x
Cd
1-
x
Se/MgSe
the in situ reflection high energy electron diffraction intensity oscillations and streak patterns demonstrate that zincblende (ZB) MgSe has been formed. Furthermore
with the introduction of thick Zn
x
Cd
1-
x
Se spacer layers
the ZB MgSe/Zn
x
Cd
1-
x
Se multi-quantum wells can be obtained. Based on the results of photoluminescence and calculation
the offset for conduction and valence band in MgSe/Zn
x
Cd
1-
x
Se heterostructure is estimated to be 1.2 eV and 0.27 eV
respectively. Using the estimated value of band offset
the calculated ISB transition energies agree well with results of infrared absorption experiments. With such a large band offset
ISB transitions in this material system could be extended to 1.55 m within an asymmetric double quantum wells with coupling effects.
关键词
Keywords
references
Zeng L, Yang B X, Cavus A, et al. Red-green-blue photopumped lasing from ZnCdMgSe/ZnCdSe quantum well laser structures grown on InP[J]. Appl. Phys. Lett., 1998, 72(24):3136-3138.[2] Shen A, Lu H, Charles W, et al. Intersubband absorption in CdSe/ZnxCdyMg1-x-ySe self-assembled quantum dot multilayers[J]. Appl. Phys. Lett., 2007, 90(7):071910-1-3.[3] Gppert M, Grn M, Maier C, et al. Intersubband and interminiband spectroscopy of doped and undoped CdS/ZnSe multiple quantum wells and superlattices[J]. Phys. Rev. B, 2002, 65(11):115334-1-5.[4] Li B S, Akimoto R, Akita K, et al. Structural study of (CdS/ZnSe)/BeTe superlattices for =1.55 m intersubband transition[J]. J. Appl. Phys., 2004, 95(10):5352-5359.[5] Akimoto R, Li B S, Akita K, et al. Subpicosecond saturation of intersubband absorption in (CdS/ZnSe)/BeTe quantum-well waveguides at telecommunication wavelength[J]. Appl. Phys. Lett., 2005, 87(18):181104-1-3.[6] Ravikumar A P, Adrian A M, Chen G P, et al. ZnCdSe/ZnCdMgSe quantum well infrared photodetector[J]. Opt. Exp., 2012, 20(20):22391-22397.[7] Franz K J, Charles W O, Shen A D, et al. ZnCdSe/ZnCdMgSe quantum cascade electroluminescence[J]. Appl. Phys. Lett., 2008, 92(12):121105-1-3.[8] Levine B F. Quantum-well infrared photodetectors[J]. J. Appl. Phys., 1993, 74(8):R1-R81.[9] Capasso F, Gmachl C, Sivco D L, et al. Quantum cascade lasers[J]. Phys. Today, 2002, 55(5):1-34.[10] Wada O. Femtosecond all-optical devices for ultrafast communication and signal processing[J]. New J. Phys., 2004, 6(1):183-1-36.[11] DeCuir E A, Fred E, Manasreh M O, et al. Near-infrared intersubband absorption in nonpolar cubic GaN/AlN superlattices[J]. Appl. Phys. Lett., 2007, 91(4):041911-1-3.[12] Lu H, Shen A, Tamargo M C, et al. Midinfrared intersubband absorption in ZnxCd1-xSe/Znx'Cdy'Mg1-x'-y'Se multiple quantum well structures[J]. Appl. Phys. Lett., 2006, 89(13):131903-1-3.[13] Sohel M, Muoz M, Tamargo M C. Molecular beam epitaxial growth and characterization of zinc-blende ZnMgSe on InP (001)[J]. Appl. Phys. Lett., 2004, 85(14):2794-2796.[14] Li B S, Shen A, Charles W O, et al. Midinfrared intersubband absorption in wide band gap Ⅱ-Ⅵ ZnxCd1-xSe multiple quantum wells with metastable zincblende MgSe barriers[J]. Appl. Phys. Lett., 92(26):261104-1-3.