CAI Jian-rui, DUAN Hui-gao, WANG Tai-hong. Imaging Techniques and Applications of The Au/Ag Nanoparticles[J]. Chinese Journal of Luminescence, 2013,34(6): 792-796
CAI Jian-rui, DUAN Hui-gao, WANG Tai-hong. Imaging Techniques and Applications of The Au/Ag Nanoparticles[J]. Chinese Journal of Luminescence, 2013,34(6): 792-796 DOI: 10.3788/fgxb20133406.0792.
Imaging Techniques and Applications of The Au/Ag Nanoparticles
Based on the 10 nm scale image processing technology and the surface plasmon resonance properties of metal nanostructures
the colorful SEM microimages can be printed by changing the size and the morphology of the metal nanostructures. As the results
the graphics pixel can be controlled in 60 nm scale (about 1 million dpi). Furthermore
using the image processing technology
the objective image can be generated faster than before and this will benefit the industrial production because of the artificial intelligent. While using the electron-beam lithography (EBL) and the deposition technology
the different structures of the Au/Ag nanoparticles can be accurately generated. And according to this paper
the results show that different structures of the Au/Ag nanoparticles can carry different surface plasmon resonance properties so that the luminescent properties of these nanoparticles can cover the visible wavelengths. In this paper
using four same size nanoparticles to represent one color can enhance the consistency between pixels. The luminescent properties of these nanoparticles will be shown by changing the size of the Au/Ag nanoparticles. And the colorful SEM microimages will also be generated while using the image processing algorithms for the permutation and combination of the different size of the Au/Ag nanoparticles.
关键词
Keywords
references
Kumar K, Duan H G, Hegde R S, et al. Printing colour at the optical diffraction limit[J]. Nat. Nanotechnol., 2012, 7(7):557-561.[2] Finlayson C E, Spahn P, Snoswell D R E, et al. 3D bulk ordering in macroscopic solid opaline films by edge-induced rotational shearing[J]. Adv. Mater., 2011, 23(13):1540-1544.[3] Haverinen H M, Myllyla R A, Jaboue G E. Inkjet printing of light emitting quantum dots[J]. Appl. Phys. Lett.,2009, 94(7):073108-1-3.[4] Kim T H, Cho K S, Lee E K, et al. Full-color quantum dot displays fabricated by transfer printing[J]. Nat. Photon.,2011, 5(5):176-182.[5] Lee S Y, Forestiere C, Pasquale A J, et al. Plasmon-enhanced structural coloration of metal films with isotropic pinwheel nanoparticle arrays[J]. Opt. Exp., 2011, 19(24):23818-23830.[6] Ozaki M, Kato J, Kawata S. Surface-plasmon holography with white-light illumination[J]. Science,2011, 332(5):218-220.[7] Xu T, Shi H, Wu Y K, et al. Structural colors: From plasmonic to carbon nanostructures[J]. Small, 2011, 7(22):3128-3136.[8] Chen Q, Cumming D R S. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films[J]. Opt. Exp., 2010, 18(13):14056-14062.[9] Inoue D, Miura A, Nomura T, et al. Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes[J]. Appl. Phys. Lett.,2011, 98(9):093113-1-3.[10] Xu T, Wu Y K, Luo X G, et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging[J]. Nat. Commun.,2010, 1:1-5.[11] Hu H L, Duan H G, Yang J K W, et al. Plasmon-modulated photoluminescence of individual gold nanostructures[J]. ACS Nano,2012, 6(11):10147-10155.