ZHAO Jun-wei, WANG Xiao-feng, WANG Yu-jiang, ZENG Qing-hui, KONG Xiang-gui. Temperature-dependent Upconversion Luminescence of &beta;-NaYF<sub>4</sub>∶Yb<sup>3+</sup>,Er<sup>3+</sup> Nanoplates[J]. Chinese Journal of Luminescence, 2013,34(6): 732-737
ZHAO Jun-wei, WANG Xiao-feng, WANG Yu-jiang, ZENG Qing-hui, KONG Xiang-gui. Temperature-dependent Upconversion Luminescence of &beta;-NaYF<sub>4</sub>∶Yb<sup>3+</sup>,Er<sup>3+</sup> Nanoplates[J]. Chinese Journal of Luminescence, 2013,34(6): 732-737 DOI: 10.3788/fgxb20133406.0732.
Temperature-dependent Upconversion Luminescence of β-NaYF4∶Yb3+,Er3+ Nanoplates
Temperature dependent characteristics of upconversion luminescence in -NaYF
4
:Yb
3+
Er
3+
nanoplates under 980 nm excitation were reported. Intense green and red upconversion emissions corresponding to (
2
H
11/2
4
S
3/2
)
4
I
15/2
and
4
F
9/2
4
I
15/2
transitions of the Er
3+
ions were observed
respectively. The green emission around 520 nm and the red emission around 660 nm continuously increase with increasing of temperature. The emission around 545 nm increases from 84 to 204 K and then decreases from 204 to 483 K. The temperature dependen ce of intensity characteristics was systematically analyzed by a simple three-level system.
关键词
Keywords
references
Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids[J]. Chem. Rev.,2004, 104(1):139-174.[2] Sun C J, Xu Z H, Yan B H, et al. Application of NaYF4∶Yb,Er upconversion fluorescence nanocrystals for solution-processed near infrared photodetectors[J]. Appl. Phys. Lett., 2007, 91(19):191113-1-3.[3] Wang F, Banerjee D, Liu Y S, et al. Upconversion nanoparticles in biological labeling, imaging, and therapy[J]. Analyst.,2010, 135(8):1839-1854. [4] Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chem. Soc. Rev., 2009, 38(4):976-989. [5] Zhou J, Zhu X J, Chen M, et al. Water-stable NaLuF4-based upconversion nanophosphors with long-term validity for multimodal lymphatic imaging[J]. Biomater.,2012, 33(26):6201-6210.[6] Li L L, Zhang R B, Yin L L, et al. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes[J]. Angew. Chem. Int. Ed.,2012, 51(25):6121-6215.[7] Zhou A G, Wei Y C, Wu B Y, et al. Pyropheophorbide a and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy[J]. Mol. Pharmaceutics.,2012, 9(6):1580-1589. [8] Shen J, Sun L D, Yan C H. Luminescent rare earth nanomaterials for bioprobe applications[J]. Dalton Trans.,2008, 9226(42):5687-5697.[9] Rahman P, Green M. The synthesis of rare earth fluoride based nanoparticles[J]. Nanoscale,2009, 1(2):214-224.[10] Li C X, Lin J. Rare earth fluoride nano-/microcrystals: Synthesis, surface modification and application[J]. J. Mater. Chem.,2010, 20(33):6831-6847.[11] Pollnau M, Gamelin D R, Lthi S R, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems[J]. Phys. Rev.B, 2000, 61(5):3337-3346.[12] Suyver J F, Aebischer A, Garca-Revilla S, et al. Anomalous power dependence of sensitized upconversion luminescence[J]. Phys. Rev.B, 2005, 71(12):125123-1-9.[13] Idris N M, Gnanasammandhan M K, Zhang J, et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers[J]. Nat. Med.,2012, 18(10):1580-1585.[14] Berthou H, Jorgensen C K. Optical-fiber temperature sensor based on upconversion-excited fluorescence[J]. Opt. Lett.,1990, 15(9):1100-1102.[15] Wade S A, Collins S F, Baxter G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J]. J. Appl. Phys.,2003, 94(8):4743-4756.[16] Wang X, Kong X G, Yu Y, et al. Effect of annealing on upconversion luminescence of ZnO∶Er3+ nanocrystals and high thermal sensitivity[J]. J. Phys. Chem.C, 2007, 111(41):15119-15124. [17] Bai X, Song H W, Pan G H, et al. Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects[J]. J. Phys. Chem.C, 2007, 111(36):13611-13617.[18] Lei Y Q, Song H W, Yang L M, et al. Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3∶Er3+,Yb3+ nanowires[J]. J. Chem. Phys.,2005, 123(17):174710-1-5.[19] Shan J N, Kong W J, Wei R. An investigation of the thermal sensitivity and stability of the -NaYF4∶Yb,Er upconversion nanophosphors[J]. J. Appl. Phys.,2010, 107(5):054901-1-5.[20] Wu X, Dai S, Toth L M, et al. Green upconversion emission from Er3+ ion doped into sol-gel silica glasses under red light (647.1 nm) excitation[J]. J. Phys. Chem., 1995, 99(13):4447-4450.[21] Vetrone F, Boyer J C, Capobianco J A. NIR to visible upconversion in nanocrystalline and bulk Lu2O3∶Er3+[J]. J. Phys. Chem. B, 2002, 106(22):5622-5628.[22] Wang X, Kong X G, Shan G Y, et al. Luminescence spectroscopy and visible upconversion properties of Er3+ in ZnO nanocrystals[J]. J. Phys. Chem. B, 2004, 108(48):18408-18413.[23] Sun Y J, Liu H J, Wang X, et al. Optical spectroscopy and visible upconversion studies of YVO4∶Er3+ nanocrystals synthesized by a hydrothermal process[J]. Chem. Mater.,2006, 18(11):2726-2732.[24] Shen X, Nie Q H, Xu T F, et al. Temperature dependence of upconversion luminescence in erbium-doped tellurite glasses[J]. J. Lumin.,2010, 130(8):1353-1356.[25] Sun Y J, Chen Y, Tian L J, et al. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4∶Yb,Er nanocrystals[J]. Nanotechnol., 2007, 18(27):275609-1-9.[26] Zhao J W, Sun Y J, Kong X G, et al. Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4∶Yb3+,Er3+ nanocrystals/nanoplates at low doping level[J]. J. Phys. Chem. B, 2008, 112(49):15666-15672.