LIU Xue-jie, WU Shuai, REN Yuan. Configuration and Evolution of 3N1Ti1Si Island on TiN(001) Surface:Ab Initio Study[J]. Chinese Journal of Luminescence, 2013,34(6): 727-731
LIU Xue-jie, WU Shuai, REN Yuan. Configuration and Evolution of 3N1Ti1Si Island on TiN(001) Surface:Ab Initio Study[J]. Chinese Journal of Luminescence, 2013,34(6): 727-731 DOI: 10.3788/fgxb20133406.0727.
Configuration and Evolution of 3N1Ti1Si Island on TiN(001) Surface:Ab Initio Study
In order to study the interface formation in the growth process of Ti-Si-N films
a series of calculations have been carried out with the first principle method to investigate the total energies and adsorption energies of some 3N1Ti1Si island configurations on the TiN (001) surface
and also the activation energies of two kinds of transformations from the Si-in-3N1Ti configuration to the Ti-in-3N1Si configuration. The calculations present some interesting results:(1) According to the energies of all 3N1Ti1Si configurations
the Ti-in-3N1Si configuration is a relative stable structure. It implies that silicon atom outside of TiN island could lead to the structure stable. (2) In the island evolution from the Si-in-3N1Ti configuration to the Ti-in-3N1Si configuration
the diffusion of silicon and titanium atoms need less activation energy than the diffusion of nitrogen atoms. (3) Compared with the evolution of 2Ti2N1Si island
the phase separation of SiN and TiN could be easily performed in the evolution of 3N1Ti-1Si island. This means that properly increasing the partial pressure of nitrogen in the deposition is beneficial to the interface formation in Ti-Si-N film growth process.
关键词
Keywords
references
Zhao H Y, Fan Q L, Song L T, et al. Research status and development of superhard nanocomposite films[J]. J. Inorg. Mater.(无机材料学报),2004, 19(1):9-16 (in Chinese).[2] Li S Z, Shi Y L, Peng H R. Ti-Si-N films prepared by plasma-enhanced chemical vapor deposition[J]. Plasma Chem.Plasma Proc.,1992, 12(3):287-297.[3] Veprek S, Reiprich S. A concept for the design of novel superhard coatings[J]. Thin Solid Films,1995, 268(1):64-71.[4] Veprek S, Niederhofer A, Moto K, et al. Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a-and nc-TiSi2 nanocomposites with HV=80 to 105 GPa[J]. Surf. Coatings Technol., 2000, 133/134:152-159.[5] Veprek S, Haussmann M, Reiprich S. Superhard nanocrystalline W2N/amorphous Si3N4 composite materials[J]. J. Vac. Sci. Technol.A: Surf. Films, 1996, 14(1):46-51.[6] Veprek S, Haussmann M, Reiprich S, et al. Novel thermodynamically stable and oxidation resistant superhard coating materials[J]. Surf. Coatings Technol., 1996, 86/87(1):394-401.[7] Marten T, Isaev E, Alling B, et al. Single-monolayer SiNx embedded in TiN: A first-principles study[J]. Phys. Rev.B, 2010, 81(21):212102-1-4.[8] Marten T, Isaev E, Alling B, et al. First-principles study of the SiNx/TiN(001) interface[J]. Phys. Rev.B, 2012, 85(10):104106-1-7.[9] Zhang R F, Veprek S. On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti-Si-N system[J]. Mater. Sci. Eng. A, 2006, 424(1/2):128-137.[10] Zhang R F, Veprek S. Crystalline-to-amorphous transition in Ti1-xSixN solid solution and the stability of fcc SiN studied by combined ab initio density functional theory and thermodynamic calculations[J]. Phys. Rev.B, 2007, 76(17):4105-4110.[11] Zhang R F, Veprek S. Phase stabilities of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1-xSixN solid solutions studied by ab initio calculation and thermodynamic modeling[J]. Thin Solid Films,2008, 516(8):2264-2275.[12] Liu X J, Zhao L L, Yuan R, et al. The configuration and evolution of Ti-Si-N island on TiN(001)surface: Ab initio study[J]. Adv. Mater. Res., 2011, 295/297:301-306.[13] Levy M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem[J]. Proc. Natl. Acad. Sci. USA, 1979, 76(12):6062-6065.[14] Khon W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev., 1965, 140(4A):A1133-A1138.[15] Roberston J. Band offsets of wide-band-gap oxides and implications for future electronic devices[J]. J. Vac. Sci. Technol.B, 2000, 18(3):1785-1791.[16] Kresse G, Furthmuller J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci.,1996, 6(1):15-50.[17] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59(3):1758-1775.[18] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev.B, 1990, 41(11):7892-7895.[19] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev. B, 1992, 45(23):13244-13249.[20] Hendrik J, Monkhorst, James D P. Special points for Brillouin-zone integrations[J]. Phys. Rev.B, 1976,13(12):5188-5192.[21] Ma D Y, Wang X, Ma S L, et al. Nanocomposite Ti-Si-N films and effect of Si contents on pulsed DC PCVD coatings quality[J]. Acta Metallurgica Sinica (金属学报), 2003, 39(10):1047-1050 (in Chinese).