CHEN De-qiang, YAO Bo, LYU Wen-li, GAO Peng-jie, PENG Ying-quan. Heterojunction Photoresponsive Organic Field-effect Transistors Based on Palladium Phthalocyanine and C<sub>60</sub>[J]. Chinese Journal of Luminescence, 2013,34(5): 629-633
CHEN De-qiang, YAO Bo, LYU Wen-li, GAO Peng-jie, PENG Ying-quan. Heterojunction Photoresponsive Organic Field-effect Transistors Based on Palladium Phthalocyanine and C<sub>60</sub>[J]. Chinese Journal of Luminescence, 2013,34(5): 629-633 DOI: 10.3788/fgxb20133405.0629.
Heterojunction Photoresponsive Organic Field-effect Transistors Based on Palladium Phthalocyanine and C60
Heterojunction photoresponsive organic field-effect transistors (PhotOFETs) based on palladium phthalocyanine (PdPc) and C
60
were fabricated. PhotOFETs with the structure n
+
-Si/SiO
2
/C
60
/PdPc/Al(S
&
D) (C
60
/PdPc-OFET) exhibit a higher photosensitivity and photoresponsivity than that with the structure n
+
-Si/SiO
2
/PdPc/C
60
/Al(S
&
D) (PdPc/C
60
-OFET). The origin for this result is the high mobility of C
60
and the well-matched LUMO levels between PdPc and C
60
. The maximum photosensitivity and the photoresponsivity of the C
60
/PdPc-OFET are 310
3
and 11 mA/W while those of PdPc/C
60
-OFET are 210
3
and 3 mA/W under the light source with a power density of 100 mW/cm
2
and emission centered at 655 nm.
关键词
Keywords
references
Roman L S, Andersson M R, Yohannes T, et al. Photodiode performance and nanostructure of polythiophene/C60 blends [J]. Adv. Mater., 2004, 9(15):1164-1168.[2] Tanaka H, Yasuda T, Fujita K, et al. Transparent image sensors using an organic multilayer photodiode [J]. Adv. Mater., 2006, 18(17):2230-2233.[3] Zukawa T, Naka S, Okada H, et al. Organic heterojunction phototransistor [J]. J. Appl. Phys., 2002, 91(3):1171-1174.[4] Marjanovi c ' N, Singh T B, Dennler G, et al. Photoresponse of organic field-effect transistors based on conjugated polymer/fullerene blends [J]. Org. Electron., 2006, 7(4):188-194.[5] Xie J P, Lv W L, Yang T, et al. The Photoresponsive organic field-effect transistors based on copper phthalocyanine [J]. Chin. J. Lumin.(发光学报), 2012, 33(9):991-995 (in Chinese).[6] Mukherjee B, Mukherjee M, Choi Y, et al. Control over multifunctionality in optoelectronic device based on organic phototransistor [J]. ACS Appl. Mater. Interf., 2010, 2(6):1614-1620.[7] Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells [J]. Adv. Funct. Mater., 2001, 11(1):15-26.[8] Scharber M C, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency [J]. Adv. Mater., 2006,18(6):789-794.[9] Ng T N, Wong W S, Chabinyc M L, et al. Flexible image sensor array with bulk heterojunction organic photodiode [J]. Appl. Phys. Lett., 2008, 92(21):213303-1-3.[10] Heremans P, Cheyns D, Rand B P. Strategies for increasing the efficiency of heterojunction organic solar cells:Material selection and device architecture [J]. Acc. Chem. Res., 2009, 42(11):1740-1747.[11] Kim I, Haverinen H M, Li J, et al. Enhanced power conversion efficiency of p-i-n type organic solar cells by employing a p-layer of palladium phthalocyanine [J]. Appl. Phys. Lett., 2010, 97(20):203301-1-3.[12] Sakurai T, Ohashi T, Kitazume H, et al. Structural control of organic solar cells based on nonplanar metallophthalocyanine/C60 heterojunctions using organic buffer layers [J]. Org. Electron., 2011, 12(6):966-973.[13] Kim I, Haverinen H M, Wang Z, et al. Efficient organic solar cells based on planar metallophthalocyanines [J]. Chem. Mater., 2009, 21(18):4256-4260.[14] Itaka K, Yamashiro M, Yamaguchi J, et al. High mobility C60 field effect transistors fabricated on molecular wetting controlled substrates [J]. Adv. Mater., 2006, 18(13):1713-1716.[15] Brown R J C, Kucernak A R, Long N J, et al. Spectroscopic and electrochemical studies on platinum and palladium phthalocyanines [J]. New J. Chem., 2004, 28(6):676-680.[16] Hamilton M C, Martin S, Kanicki J. Thin-film organic polymer phototransistors [J]. IEEE Trans. Electron. Dev., 2004, 51(6):877-885.[17] Wang J, Wang H, Yan X, et al. Heterojunction ambipolar organic transistors fabricated by a two-step vacuum-deposition process [J]. Adv. Funct. Mater., 2006, 16(6):824-830.[18] Takahashi N, Maeda A, Uno K, et al. Output properties of C60 field-effect transistors with different source/drain electrodes [J]. Appl. Phys. Lett., 2007, 90(8):083503-1-3.[19] Kushto G P, Makinen A, Lane P A. Organic photovoltaic cells using group 10 metallophthalocyanine electron donors [J]. IEEE J. Sel. Top. Quant., 2010, 16(6):1552-1559.
Recent Developments of Light-emitting and Laser Devices Based on Zinc Oxide Micro-/Nanostructures
Preparation of n-Ga2O3/p-GaAs Heterojunction Solar-blind UV Photodetectors
Research Progress on Structure Design of Direct Halogen Perovskite X-ray Detectors
Photodetectors Based on A 2D/3D Hybrid Tin Perovskite/SnO2 Heterojunction
Fabrication and Photocatalytic Properties of PbSe/TiO2 Coaxial Heterojunction Nanotubes
Related Author
LIU Maosheng
WANG Jinhui
KAN Caixia
SHI Daning
JIANG Mingming
DANG Xinming
JIAO Teng
CHEN Peiran
Related Institution
College of Physics, MIIT Key Laboratory of Aerospace Information Materials and Physics, Key Laboratory for Intelligent Nano Materials and Devices, Nanjing University of Aeronautics and Astronautics
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University
School of Materials Science and Engineering, Nanjing University of Science and Technology
College of Chemical Engineering and Material, Quanzhou Normal University
Fujian Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, College of Physics and Information Engineering, Quanzhou Normal University