PU Nian-nian, LI Hai-rong, SHEN Zhi-li, MA Guo-fu, LIU Su. Effect of TiO<sub><em>x</em></sub> on The Performance of Polymer Solar Cells[J]. Chinese Journal of Luminescence, 2013,34(5): 600-604
PU Nian-nian, LI Hai-rong, SHEN Zhi-li, MA Guo-fu, LIU Su. Effect of TiO<sub><em>x</em></sub> on The Performance of Polymer Solar Cells[J]. Chinese Journal of Luminescence, 2013,34(5): 600-604 DOI: 10.3788/fgxb20133405.0600.
Effect of TiOx on The Performance of Polymer Solar Cells
nanoparticle/alheterojunction organic solar cell was fabricated by the specific film technology. Titanium oxide layers were made by using different TiO
x
precursors. The effect of the TiO
x
layer on the performance of the solar cells was studied. We found that the devices made by the TiO
x
layers mixed with organics result in effective open-circuit voltage but correspondingly lower short-circuit current. The effection of low temperature annealing and thickness optimization of TiO
x
layers on the performance of devices was studied. Applying room temperature technology to prepare TiO
x
precursor solution not only gets the excellent results but also simplifies the process.
关键词
Keywords
references
Opara K U, Berginc M, Ho c ˇ evar M, et al. Unique TiO2 paste for high efficiency dye-sensitized solar cells [J]. Sol. Energy Mater. Sol. Cells, 2009, 93(3):379-381.[2] Luo J, Liu C, Yang S, et al. Hybrid solar cells based on blends of poly (3-hexylthiophene) and surface dye-modified, ultrathin linear-and branched-TiO2 nanorods [J]. Sol. Energy Mater. Sol. Cells, 2010, 94(3):501-508.[3] Li S S, Lin Y Y, Su W F, et al. Polymer/metal oxide nanocrystals hybrid solar cells [J]. IEEE J. Sel. Top. Quantum Elect., 2010, 16(6):1635-1640.[4] Kuwabara T, Sugiyama H, Yamaguchi T, et al. Inverted type bulk-heterojunction organic solar cell using electrodeposited titanium oxide thin films as electron collector electrode [J]. Thin Solid Films, 2009, 517(13):3766-3769.[5] Li Y, Lee W, Lee D K, et al. Pure anatase TiO2 'nanoglue’: An inorganic binding agent to improve nanoparticle interconnections in the low-temperature sintering of dye-sensitized solar cells [J]. Appl. Phys. Lett., 2011, 98(10):103301-1-3.[6] Yang J Y, Sun Y, Lv P, et al. Band offsets of epitaxial LaAlO3/TiO2 interface determined by X-ray photoelectron spectroscopy [J]. Appl. Phys. A-Mater., 2011, 105(4):1017-1020.[7] Kim J Y, Kim S H, Lee H H, et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer [J]. Adv. Mater., 2006, 18(5):572-576.[8] Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing [J]. Science, 2007, 317(5835):222-225.[9] Yu Y Y, Chien W C, Ko Y H, et al. Preparation and characterization of P3HT:CuInSe2:TiO2 thin film for hybrid solar cell applications [J]. Thin Solid Films, 2011, 520(5):1503-1510.[10] Kusama H, Arakawa H. Influence of alkylaminopyridine additives in electrolytes on dye-sensitized solar cell performance [J]. Sol. Energy Mater. Sol. Cells, 2004, 81(1):87-99.[11] Kusama H, Arakawa H, Sugihara H. Density functional study of imidazole-iodine interaction and its implication in dye-sensitized solar cell [J]. J Photoch. Photobio. A, 2005, 171(2):197-204.[12] Huang S Y, Schlichthörl G, Nozik A J, et al. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells [J]. J. Phys. Chem. B, 1997, 101(14):2576-2582.[13] Johansson E M J, Schölin R, Siegbahn H, et al. Energy level alignment in TiO2 dipole-molecule/P3HT interfaces [J]. Chem. Phys. Lett., 2011, 515(1):146-150.[14] Brabec C J, Cravino A, Meissner D, et al. The influence of materials work function on the open circuit voltage of plastic solar cells [J]. Thin Solid Films, 2002, 403:368-372.