LIN Jie, LIU Xiao-xin, CHU Ming-hui, LIU Xing-yuan. The Multicolor Electroluminescence Based on Europium-complex Microcavity[J]. Chinese Journal of Luminescence, 2013,34(4): 484-487
LIN Jie, LIU Xiao-xin, CHU Ming-hui, LIU Xing-yuan. The Multicolor Electroluminescence Based on Europium-complex Microcavity[J]. Chinese Journal of Luminescence, 2013,34(4): 484-487 DOI: 10.3788/fgxb20133404.0484.
The Multicolor Electroluminescence Based on Europium-complex Microcavity
The multi-layer microcavity OLEDs have been fabricated with hole transport layers of CBP and TCTA
an emissive layer of Eu(DBM)
3
Bath
and an electron transport layer of TPBI. Multicolor electroluminescence from the transition of Eu
3+
iron with three peaks at 580 nm (
5
D
0
7
F
0
)
612 nm (
5
D
0
7
F
2
)
and 652 nm (
5
D
0
7
F
3
) was achieved by changing the transition rate between the different energy levels of Eu(DBM)
3
Bath through optical microcavity. The microcavity OLED device with an EL peak of 612 nm shows the maximum current efficiency more than 20 cd/A
and maximum luminance over 1 300 cd/m
2
.
关键词
Keywords
references
Liu X, Gao S, Wang L, et al. Synthesis, luminescent properties, and theoretical study of novel Sm3+ and Dy3+ complexes containing β-diketone and 1,10-phenanthroline [J]. Rare Metals, 2011, 30(1):28-32.[2] Li Q, Yan B. Multi-walled carbon nanotube-based ternary rare earth (Eu3+, Tb3+) hybrid materials with organically modified silica-oxygen bridge [J]. J. Colloid. Interf. Sci., 2012, 380(1):67-74.[3] Mooibroek T J, Gamez P, Pevec A, et al. Efficient, stable, tunable, and easy to synthesize, handle and recycle luminescent materials: H2NMe2 (3) Ln(Ⅲ)(2,6-dipicolinolate)(3) (Ln=Eu, Tb, or its solid solutions) [J]. Dalton Transactions, 2010, 39(28):6483-6487.[4] Shukla P, Sudarsan V, Vatsa R K, et al. Effect of symmetric substitution on the phenyl groups of Eu3+-dibenzoyl methane complexes on their luminescence properties [J]. J. Lumin., 2010, 130(10):1952-1957.[5] Zhao X, Huang K, Jiao F, et al. Fluorescence enhancement and cofluorescence in complexes of terbium(Ⅲ) with trimellitic acid [J]. Rare Metals, 2006, 25(2):144-149.[6] Gu Y, Yan B, Li Y. Ternary europium mesoporous polymeric hybrid materials Eu(beta-diketonate)(3)pvpd-SBA-15(16): Host-guest construction, characterization and photoluminescence [J]. J. Solid State Chem., 2012, 190:36-44.[7] Hilder M, Junk PC, Kynast U H. Spectroscopic properties of lanthanoid benzene carboxylates in the solid state:Part 1 [J]. J.Photochem. Photobiol. A: Chem., 2009, 202(1):10-20.[8] Kerbellec N, Kustaryono D, Haquin V, et al. An unprecedented family of lanthanide-containing coordination polymers with highly tunable emission properties [J]. Inorg. Chem., 2009, 48(7):2837-2843.[9] Liang C J, Li W L, Hong Z R, et al. Organic electroluminescence from rare earth complex Eu(DBM)3bath [J]. Chin. J. Lumin.(发光学报), 1998, 19(1):89-91 (in Chinese).[10] Okada K, Uekawa M, Wang Y F, et al. Red organic electroluminescent devices based on novel furan-contained Eu complex as an emitting layer [J]. Chem. Lett., 1998, 27(8):801-802.[11] Hong Z R, Liang C J, Li R G, et al. Rare earth complex as a high-efficiency emitter in an electroluminescent device [J]. Adv. Mater., 2001, 13(16):1241-1245.[12] Sun X Y, Li W L, Hong Z R, et al. Improved performance of Eu complex OLEDs with microcavity structure [J]. Chin. J. Lumin.(发光学报), 2005, 26(2):262-264 (in Chinese).[13] Feng J, Okamoto T, Kawata S. Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices [J]. Appl. Phys. Lett., 2005, 87(24):241109-1-3.[14] Sun X Y, Li W L, Hong Z R, et al. Improved performance of europium-complex electroluminescent devices with metal-mirror microcavity [J]. J. Phys. D: Appl. Phys., 2006, 39(7):1363-1366.[15] Choy W C H, Niu J H, Li W L, et al. Voltage-controlled colour-tunable microcavity OLEDs with enhanced colour purity [J]. J. Phys. D: Appl. Phys., 2008, 41(2):025106-1-5.