浏览全部资源
扫码关注微信
四川大学物理科学与技术学院 纳光子技术研究所, 四川 成都 610064
Received:08 January 2013,
Revised:22 January 2013,
Published Online:25 January 2013,
Published:10 April 2013
移动端阅览
任良科, 杜惊雷, 李淑红, 张志友, 侯宜栋, 高福华, 黄霞. 基于PS球刻蚀技术制备纳米孔滤波器结构的优化分析[J]. 发光学报, 2013,34(4): 456-462
REN Liang-ke, Du Jing-lei, LI Shu-hong, ZHANG Zhi-you, HOU Yi-dong, Gao Fu-hua, HUANG Xia. Optimizing and Analyzing of The Structural Parameters of Metallic Nano-hole Array Fabricated by PS Sphere's Etching Technology[J]. Chinese Journal of Luminescence, 2013,34(4): 456-462
任良科, 杜惊雷, 李淑红, 张志友, 侯宜栋, 高福华, 黄霞. 基于PS球刻蚀技术制备纳米孔滤波器结构的优化分析[J]. 发光学报, 2013,34(4): 456-462 DOI: 10.3788/fgxb20133404.0456.
REN Liang-ke, Du Jing-lei, LI Shu-hong, ZHANG Zhi-you, HOU Yi-dong, Gao Fu-hua, HUANG Xia. Optimizing and Analyzing of The Structural Parameters of Metallic Nano-hole Array Fabricated by PS Sphere's Etching Technology[J]. Chinese Journal of Luminescence, 2013,34(4): 456-462 DOI: 10.3788/fgxb20133404.0456.
金属纳米孔阵列作为彩色滤波器件在OLED中有很好的应用前景。本文提出利用胶体晶体刻蚀与真空沉积技术制作大面积金属纳米孔阵列滤波器
并用FDTD模拟优化所需要加工的金属孔阵列的结构参数
分析了其滤波效果及其物理规律和机制。研究表明:在选择粒径为720 nm的PS球、刻蚀剩余粒径为240 nm、金属膜厚度为120 nm的条件下
满足CIE红光显示标准的共振波长为704.06 nm
强度透射率为52%
透射谱带宽为24.8 nm。模拟结果为用PS球刻蚀技术制备金属纳米孔阵列的实验提供了理论支持。
Metallic nano-hole array based color filter is showing the great potential application for OLED. In this paper
we propose the metallic nano-hole array based filter in large area by employing colloidal etching and vacuum depositing technology. To ease the fabrication
the structural parameters of the nano-hole array on the transmittance of the red light as well as the bandwidth is systematically studied and analyzed. The simulation results indicate that when the diameter of the nanohole is 240 nm and the film thickness is 120 nm
the transmitted resonant wavelength for red display is 704.06 nm
the intensity transmission is 52%
and the bandwidth is only 24.8 nm. The simulation results provide a theoretic guide for the fabrication of metallic nano-hole array by PS sphere's etching and vacuum depositing technology.
D'andrade B W, Stephen R F. White organic light-emitting devices for solid-state lighting [J]. Adv. Mater., 2004, 16(18):1585-1595.[2] Ko Y W, Chung C H, Lee J H, et al. Efficient white organic light emission by single emitting layer [J]. Thin Solid Films, 2003, 426(1/2):246-249.[3] Huang H H, Chu S Y, Kao P C, et al. High efficiency red organic light-emitting diodes using a phosphorescent iridium complex doped into a hole-blocking material [J]. Thin Solid Films, 2009, 517(13):3788-3791.[4] Wu X M, Hua Y L, Wang Z Q, et al. Multi-color display and its model for a white OLED combined with optical color filters [J]. Optik - Int. J. Light and Electron Opt., 2006, 117(8):373-376.[5] Yan X, Xu W, Li C, et al. Utilizing white OLED for full color reproduction in flat panel display [J]. Organic Electronics, 2008, 9(4):533-538.[6] Sabnis R W. Color filter techonogy for liquid crystal display [J]. Displays, 1999, 20(1):119-129.[7] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature, 1998, 391:667-669.[8] Martín-Moreno L, García-Vidal F J, Lezec H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays [J]. Phys. Rev. Lett., 2001, 86(6):1114-1117.[9] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics [J]. Nature, 2003, 424:824-830.[10] Genet C, Ebbesen T W. Light in tiny holes [J]. Nature, 2007, 445(7123):39-46.[11] Martín-Moreno L, García-Vidal F J. Minimal model for optical transmission through holey metal films [J]. J.Phys.:Condens. Matter, 2008, 20(30):304214-1-13.[12] Van der Molen K L, Segerink F B, Van Hulst N F. Influence of hole size on the extraordinary transmission through subwavelength hole arrays[J]. Appl. Phys. Lett., 2004, 85(19):4316-4318.[13] Van der Molen K L, Klein Koerkamp K J, Enoch S, et al. Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory [J]. Phys. Rev. B, 2005, 72(4):045421-1-9..[14] Ctistis G, Patoka P, Wang X, et al. Optical transmission through hexagonal arrays of subwavelength holes in thin metal films [J]. Nano Lett., 2007, 7(9):2926-2930.[15] Srituravanich W, Fang N, Sun C, et al. Plasmonic nanolithography [J]. Nano Lett., 2004, 4(6):1085-1088.[16] Reilly T H, Chang S H, Corbman J D, et al. Quantitative evaluation of plasmon enhanced raman scattering from nanoaperture arrays [J]. J. Phys. Chem. C, 2007, 111(4):1689-1694.[17] Sannomiya T, Scholder O, Jefimovs K, et al. Investigation of plasmon resonances in metal films with nanohole arrays for biosensing applications [J]. Small, 2011, 7(12):1653-1663.[18] Degiron A, Ebbesen T W. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures [J]. J. Opt. A: Pure and Appl. Opt., 2005, 7(2):S90-S96.[19] Hu X, Zhan L, Xia Y X. Color filters based on enhanced optical transmission of subwavelength-structured metallic film for multicolor organic light-emitting diode display [J]. Appl. Opt., 2008, 47(23):4275-4279.[20] Chang Y T, Wu Y T, Lee J H, et al. Emission properties of Ag/dielectric/Ag plasmonic thermal emitter with different lattice type, hole shape, and dielectric material [J]. Appl. Phys. Lett., 2009, 95(21):213102-1-3.[21] Barnes W L, Murray W A, Dintinger J, et al. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film [J]. Phys. Rev. Lett., 2004, 92(10):107401-1-4.[22] Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings [M]. Berlin: Springer-Verlag, 1988.[23] Johnson P B, Christy R W. Optical constants of the noble metals [J]. Phys. Rev. B, 1972, 6(12):4370-4379.
0
Views
243
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution