浏览全部资源
扫码关注微信
1. 宁波大学理学院 光电子技术研究所,浙江 宁波,315211
2. 宁波大学 材料科学与化学工程学院,浙江 宁波,315211
Received:03 December 2012,
Revised:24 December 2012,
Published:10 March 2013
移动端阅览
颜承恩, 周骏, 李星, 束磊, 马亚楠. 金纳米粒子掺杂DNA-CTMA-DPFP薄膜的表面增强拉曼散射特性[J]. 发光学报, 2013,34(3): 382-387
YAN Cheng-en, ZHOU Jun, LI Xing, SHU Lei, MA Ya-nan. Surface Enhanced Raman Scattering Characteristics of Gold-nanoparticles-doped DNA-CTMA-DPFP Film[J]. Chinese Journal of Luminescence, 2013,34(3): 382-387
颜承恩, 周骏, 李星, 束磊, 马亚楠. 金纳米粒子掺杂DNA-CTMA-DPFP薄膜的表面增强拉曼散射特性[J]. 发光学报, 2013,34(3): 382-387 DOI: 10.3788/fgxb20133403.0382.
YAN Cheng-en, ZHOU Jun, LI Xing, SHU Lei, MA Ya-nan. Surface Enhanced Raman Scattering Characteristics of Gold-nanoparticles-doped DNA-CTMA-DPFP Film[J]. Chinese Journal of Luminescence, 2013,34(3): 382-387 DOI: 10.3788/fgxb20133403.0382.
采用柠檬酸三钠还原氯金酸和离子交换法制备金纳米粒子掺杂DNA-CTMA材料
利用钯催化反应合成9
9-二乙基-2
7-二-(4-吡啶)芴荧光染料(DPFP)
将DPFP与DNA-CTMA混合后
旋凃制备金纳米粒子掺杂的DNA-CTMA-DPFP薄膜样品。通过吸收光谱、荧光光谱和拉曼光谱的测量
研究了薄膜样品的光学特性和表面增强拉曼散射(SERS)特性。实验结果表明
薄膜样品在300~360 nm的吸收主要来自DPFP
在500~700 nm的吸收来自样品中金纳米粒子的局域表面等离子共振;样品在370
386
408 nm处的荧光峰分别对应DPFP的S
10
-S
00
、S
10
-S
01
和S
10
-S
02
能级的电子振动跃迁;在785 nm激光激发下
薄膜样品的拉曼散射主要来自DPFP分子
随着金纳米粒子掺杂比的增大
DPFP分子的拉曼散射峰强度逐渐增强。因此
金纳米粒子掺杂DNA-CTMA薄膜适合作为多种染料分子的SERS基底。
The gold nanoparticles were prepared by the reduction of gold chloride with sodium citrate in aqueous solution and the gold-nanoparticles-doped DNA-CTMA complexes were prepared by ion-change method
and the 4-(9
9-diethyl-2-(pyridin-4-yl)-9H-fluoren-7-yl) pyridine (DPFP) was synthesized via a Suzuki coupling reaction. The gold-nanoparticles-doped DNA-CTMA-DPFP film samples were fabricated by spin-coating the mixed butanol solutions of gold-nanoparticles-doped DNA-CTMA complexes and DPFP. The optical spectra properties and surface enhanced Raman scattering (SERS) characteristics of the film samples were characterized by measuring their absorption spectra
fluorescence spectra
and Raman spectra
respectively. The experimental results show that the absorption of film samples in the range of 300~360 nm are derived mainly from the DPFP dye molecule
whereas the absorption ranging from 500 nm to 700 nm come from the local surface plasma resonance (LSPR) of gold nanoparticles
and the fluorescence spectra exhibits well-defined vibronic peaks at 370 nm (S
10
-S
00
transition)
386 nm (S
10
-S
01
transition)
with a shoulder near 408 nm (S
10
-S
02
transition). The Raman spectra of DPFP dye molecule in the film samples were excited by a laser with the wavelength 785 nm
and the SERS peak intensities of DPFP molecule gradually increase as the increases of gold nanoparticles doped into the DNA-CTMA complexes. Therefore
the gold-naoparticles-doped DNA-CTMA films are suitable as the SERS substrates of many dye molecules.
Wang L, Yoshida J, Ogata N, et al. Self-assembled supramolecular films derived from marine dexoyribonucleic acid (DNA)-cationic surfactant complexes:large-scale preparation and optical and thermal properties [J]. Chem. Mater.,2001, 13(4):1273-1281.[2] Yaney P, Heckman E, Diggs D, et al. Development of chemical sensors using polymer optical waveguide fabricated with DNA [J]. SPIE, 2005, 5724:224-233.[3] Hagen J A, Li W, Steckla A J, et al. Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer [J]. Appl. Phys. Lett., 2006, 88(17):171109-1-3.[4] Stadler P, Oppelt K, Singh T B, et al. Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric [J]. Organic Electronics, 2007, 8(6):648-654.[5] Ding H F, Zhang F Y, Lin H, et al. Amplified spontaneous emission of fluorescent dye-doped DNA-CTMA thin films [J]. Chin. J. Lasers (中国激光), 2011, 38(5):175-180 (in Chinese).[6] Stewart M E, Aanderton C R, Thompson L B, et al. Nanostructured plasmonic sensors [J]. Chem. Rev., 2008, 108(2):494-521.[7] Stoerzinger K A, Hasan W, Lin J Y, et al. Screening nanopyramid assemblies to optimize surface enhanced Raman scattering [J]. J. Phys. Chem. Lett., 2010, 1(7):1046-1050.[8] Li W Y, Camargo P H C, Lu X M, et al. Dimers of silver nanospheres:Facile synthesis and their use as hot spots for surface-enhanced Raman scattering [J]. Nano Lett., 2009, 9(1):485-490.[9] Sherry L J, Chang S H, Schatz G C, et al. Localized surface plasmon resonance spectroscopy of single silver nanocubes [J]. Nano Lett., 2005, 5(10):2034-2038.[10] Liu S P, Zhu H F, Chen N, et al. Surface enhanced Raman scattering spectrum analysis of nude mouse serum with Au nanoparticles active substrate [J]. Chin. J. Lasers.(中国激光), 2012, 39(5):137-140 (in Chinese).[11] Huang Q, Xiong S Z, Zhao Y, et al. Nonlinear phenomenon of surface enhanced Raman scattering caused by surface plasmon [J]. Acta Phys. Sinica(物理学报), 2012, 61(15):157801-1-6 (in Chinese).[12] Xi G Q, Chen Y P, Chen G, et al. Surface-enhanced Raman scattering spectroscopic assay of immunohistochemically stained human colon cancer tissue [J]. Chin. J. Lasers(中国激光), 2011, 38(9):85-90 (in Chinese).[13] Xing H, Wang Z, Xu Z, et al. DNA-directed assembly of asymmetric nanoclusters using Janus nanoparticles [J]. ACS Nano, 2012, 6(1):802-809.[14] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles [J]. Science, 1997, 277(5329):1078-1081.[15] Powell R D, Halsey C M R, Hainfeld J F, et al. Combined fluorescent and gold immunoprobes:Reagents and methods for correlative light and electron microscopy [J]. Microsc. Res. Technol.,1998, 42(1):2-12.[16] Dubertret B, Calame M, Libachaber A J, et al. Single-mismatch detection using gold-quenched fluorescent oligonucleotides [J]. Nat. Biotechnol., 2001, 19(4):365-370.[17] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions [J]. Nat. Phys. Sci., 1973, 241(1):20-22.[18] Yan C G, Lin H, Zhang F Y, et al. Amplified spontaneous emission of fluorene fluorescent-dye-doped DNA-CTMA thin films [J]. High Power Laser and Particle Beams(强激光与粒子束), 2012, 24(10):2306-2310 (in Chinese).[19] Quillard S, Louarn G, Lefrant S. Vibrational analysis of polyaniline:A comparative study of leucoemeraldine, emeraldine and pernigraniline bases [J]. Phys. Rev.B, 1994, 50(17):12496-12508.[20] Liu Y C. Evidence of chemical effect on surface-enhanced Raman scattering of polypyrrole films electrodeposited on roughened gold substrates [J]. Langmuir, 2002, 18(1):174-181.
0
Views
38
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution