JIN Hui, JIANG Hui-lin, ZHENG Yu-quan, MA Hong-tao. Spectral Calibration of The Hyperspectral Optical Remote Sensor[J]. Chinese Journal of Luminescence, 2013,34(2): 235-239
JIN Hui, JIANG Hui-lin, ZHENG Yu-quan, MA Hong-tao. Spectral Calibration of The Hyperspectral Optical Remote Sensor[J]. Chinese Journal of Luminescence, 2013,34(2): 235-239 DOI: 10.3788/fgxb20133402.0235.
Spectral Calibration of The Hyperspectral Optical Remote Sensor
Accurate calibration of hyperspectral optical remote sensing spectral performance parameters is the basic premise of the quantitative application of hyperspectral optical remote sensing data. Based a monochromatic collimated cursor titration hyperspectral optical remote sensor calibration of the spectral performance parameters
spectral performance parameters of high-spectral optical remote sensor calibration data were analyzed by the data acquisition software and data processing software. The analysis results show that the calibration test repeatability is less than 0.2 nm within 1 h
and less than 0.35 nm within 20 h. The spectral scaling results show that the average spectral resolution of hyperspectral optical remote sensor is 4.94 nm
and the spatial dimension of the high-spectral optical remote sensor spectral resolution is less than 5 nm
the average of the typical spectral bandwidth is about 6 nm.
关键词
Keywords
references
Labaw C. Airborne imaging spectrometer: An advanced concept instrument [J]. SPIE, 1983, 430:68-73.[2] Macenka S A, Chrisp M P. Airborne visible/infrared imaging spectrometer (AVIRIS) [J]. SPIE, 1987, 834:32-43.[3] Marmo J, Folkman M A, Kuwahara C Y, et al. Lewis hyperspectral imager payload development [J]. SPIE, 1996, 2819:80-90.[4] Blechinger F, Kunkel B P, Charlton D E, et al. High resolution imaging spectrometer (HRIS)-optics, focal plane and calibration [J]. SPIE, 1993, 1937:207-224.[5] Kunkel B P, Blechinger F, Lutz R, et al. PRISM (processes research by an imaging spaceborne mission)-high resolution hyperspectral imager for scientific land processes monitoring applications [J]. SPIE, 1995, 2585:283-286.[6] Wilson T L, Davis C O. Hyperspectral remote sensing technology (HRST) program and the naval earth map observer (NEMO) satellite [J]. SPIE, 1998, 3437:2-11.[7] Otten L J, Meigs A D, Portigal F P, et al. MightySat Ⅱ.1: An optical design and performance update [J]. SPIE, 1996, 2957:390-398.[8] Fletcher P A. Image acquisition planning for the CHRIS sensor onboard PROBA [J]. SPIE, 2004, 5546:141-150.[9] Folkman M A, Pearlman J, Liao L B, et al. EO-1/hyperion hyperspectral imager design, development, characterization, and calibration [J]. SPIE, 2001, 4151:40-51.[10] Xiu J H, Huang P, Li J, et al. Radiometric calibration of large area array color CCD aerial mapping camera [J]. Opt. Precision Eng.(光学 精密工程), 2012, 20(6):1365-1373 (in Chinese) .[11] Wang Z, Wu G D. Calibration of transition matrix on cubic prisms in mapping camera and star sensor [J]. Opt. Precision Eng.(光学 精密工程), 2012, 20(1):96-101 (in Chinese).[12] Zheng Y Q. Precise spectral calibration for hyperspectral imager [J]. Opt. Precision Eng.(光学 精密工程), 2010, 18(11):2347-2354 (in Chinese) .[13] Qi X D, Han P P, Pan M Z, et al. Spectral calibration of imaging spectrometer with convex grating [J]. Opt. Precision Eng.(光学 精密工程), 2011, 19(12):2870-2876.[14] Liu Q Q, Zheng Y Q. Development of spectral calibration technologies with ultra-high resolutions [J]. Chinese Optics (中国光学), 2012, 5(6):566-577 (in Chinese).[15] Zhang J Q, Shao J B, Yan C X, et al. Data processing of on-orbit spectral calibration of space-borne high resolution imaging spectrometer [J]. Chinese Optics (中国光学), 2011, 4(2):175-181 (in Chinese) .