WANG Dong-sheng, GUO Wen-ping, ZHANG Ke-xiong, LIANG Hong-wei, SONG Shi-wei, YANG De-chao, SHEN Ren-sheng, LIU Yang, XIA Xiao-chuan, LUO Ying-min, DU Guo-tong. Fabrication of High-performance 400 nm Violet Light Emitting Diode[J]. Chinese Journal of Luminescence, 2013,34(2): 225-229
WANG Dong-sheng, GUO Wen-ping, ZHANG Ke-xiong, LIANG Hong-wei, SONG Shi-wei, YANG De-chao, SHEN Ren-sheng, LIU Yang, XIA Xiao-chuan, LUO Ying-min, DU Guo-tong. Fabrication of High-performance 400 nm Violet Light Emitting Diode[J]. Chinese Journal of Luminescence, 2013,34(2): 225-229 DOI: 10.3788/fgxb20133402.0225.
Fabrication of High-performance 400 nm Violet Light Emitting Diode
High-performance 400 nm violet InGaN multi-quantum-wells light-emitting diodes (LED) with p-AlGaN electron blocking layer were fabricated on sapphire substrate by metal organic chemical vapor deposition technique. Different kinds of p-AlGaN electron blocking layers were grown in three violet LEDs: bulk p-AlGaN with Al mole fraction of 9%
bulk p-AlGaN with Al mole fraction of 11% and super lattice p-AlGaN/GaN with Al mole fraction of 20%. The output power of violet LED with bulk p-AlGaN(11%) is higher than the LED with bulk p-AlGaN(9%). Typically
the output power of the LED with 10 pairs of p-AlGaN/GaN super lattice electron blocking layer has been greatly improved. A LED with an output power of 21 mW at an injection current of 20 mA is achieved. In additional
the LED also shows an almost linear I-L characteristics at high injection current and uniform intensity mapping on LED chip surface.
关键词
Keywords
references
Nakamura S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes [J]. Science, 1998, 281(5379):956-961.[2] Nakamura S, Senoh M, Iwasa N, et al. Superbright Green InGaN single-quantum-well-structure light-emitting diodes [J]. J. Appl. Phys., 1995, 34(10B):1332-1335.[3] Mukai T, Morita D, Nakamura S. High-power UV InGaN/AlGaN double-heterostructure LEDs [J]. J. Crystal Growth, 1998, 189/190(1/2):778-781.[4] Mukai T, Yamada M, Nakamura S. Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes [J]. Jpn. J. Appl. Phys., 1998, 37(11B):1358-1361.[5] Nakamura S, Senoh M, Nagahama S, et al. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices [J]. Jpn. J. Appl. Phys., 1997, 36(2):1568-1571.[6] Wang H X, Li H D, Lee Y B, et al. Fabrication of high-performance 370 nm ultraviolet light-emitting diodes [J]. J. Crystal Growth, 2004, 264(1/2/3):48-52.[7] Wierer J J, Fischer A J, Koleske D D. The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices [J]. Appl. Phys. Lett., 2010, 96(5):051107-1-3 [8] Mukai T, Nakamura S. Ultraviolet InGaN and GaN single-quantum-well-structure light-emitting diodes grown on epitaxially laterally overgrown GaN substrates [J]. Jpn. J. Appl. Lett., 1999, 38(10):5735-5739. [9] Uchida K, Tang T, Goto S, et al. Spiral growth of InGaN/InGaN quantum wells due to Si doping in the barrier layers [J]. Appl. Phys. Lett., 1999, 74(8):1153-1155.[10] Guo X, Schubert E F. Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates [J]. Appl. Phys. Lett., 2001, 78(21):3337-3339.[11] Kim H, Park S J, Hwang H, et al. Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs [J]. Appl. Phys.Lett., 2002, 81(7):1326-1328.[12] Cho Y H, Song J J, Keller S, et al. Influence of Si doping on characteristics of InGaN/GaN multiple quantum wells [J]. Appl. Phys. Lett., 1998, 73(8):1128-1130.