HE Dong-li, LYU Shu-chen, QU Xiu-rong, MAO Jin-wei, MENG Qing-yu. Preparation of Nanocrystalline Gd<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>∶Eu<sup>3+</sup>,Sm<sup>3+</sup> and The Sensitization of Sm<sup>3+</sup> to Eu<sup>3+</sup> Characteristic Emission[J]. Chinese Journal of Luminescence, 2013,34(2): 171-177
HE Dong-li, LYU Shu-chen, QU Xiu-rong, MAO Jin-wei, MENG Qing-yu. Preparation of Nanocrystalline Gd<sub>2</sub>(WO<sub>4</sub>)<sub>3</sub>∶Eu<sup>3+</sup>,Sm<sup>3+</sup> and The Sensitization of Sm<sup>3+</sup> to Eu<sup>3+</sup> Characteristic Emission[J]. Chinese Journal of Luminescence, 2013,34(2): 171-177 DOI: 10.3788/fgxb20133402.0171.
Preparation of Nanocrystalline Gd2(WO4)3∶Eu3+,Sm3+ and The Sensitization of Sm3+ to Eu3+ Characteristic Emission
nanocrystalline powders were prepared by chemical co-precipitation method
respectively. The structure and luminescent properties of nanocrystalline Gd
2
(WO
4
)
3
∶Eu
3+
and Gd
2
(WO
4
)
3
∶Eu
3+
Sm
3+
were studied by using XRD and fluorescence spectrophotometer. The results show that the crystal phase of the samples as prepared is base centered monoclinic structure. When the mole fraction of Eu
3+
is 20%
the luminescent intensity of Eu
3+
is the greatest. Sm
3+
sensitized Eu
3+
in the samples Gd
2
(WO
4
)
3
∶Eu
3+
Sm
3+
. The sensitized effect of Sm
3+
on Eu
3+
was more obvious when the sample Gd
2
(WO
4
)
3
∶Eu
3+
Sm
3+
was excited by 464 nm light than by 395 nm light. Sm
3+
can realize the energy transfer from Sm
3+
to Eu
3+
making the emission of
5
D
0
7
F
2
more strength. When the mole fraction of Sm
3+
was 5%
the luminescent intensity of the sample Gd
2
(WO
4
)
3
∶20%Eu
3+
5%Sm
3+
was the greatest. The transition of
5
D
0
7
F
2
was clearly observed under 405 nm or 440 nm excitation. Therefore
Eu
3+
and Sm
3+
co-doped in the matrix Gd
2
(WO
4
)
3
greatly expanded the range of the wavelength of the excitation light source.
关键词
Keywords
references
Yi L H, Zhou L Y, Wang Z L, et al. KGd( MoO4)2 Eu3+ as a promising red phosphor for light emitting diode application [J]. Current Appl. Phys., 2010, 10(1):208-213.[2] Wang T, Jing Y J, Zhu Y H, et al. Progress of the research on tungstate and molybdate red phosphor for white-LED [J]. China Light﹠Lighting (中国照明电器), 2008(2):16-20 (in Chinese).[3] Pan Y X, Wu M M, Su Q. Comparative investigation on synthesis and photoluminescence of YAG∶Ce phosphor [J]. Mater. Sci. Eng. B, 2004, 106(3):251-256.[4] Li P L, Yang Z P, Wang Z J, et al. Luminescence characteristics of red LiM(M=Ca,Sr,Ba)BO3∶Re3+(Re=Eu,Sm) phosphor [J]. Chin. J. Lumin.(发光学报), 2009, 30(2):179-183 (in Chinese).[5] Wang X F, Xia W, Xiao Z G. Synthesis and luminescent properties of a novel red phosphor CaAl12O19∶Eu,Mn [J]. Chin. J. Lumin.(发光学报), 2009, 30(3):405-408 (in Chinese).[6] Jing Y J, Wang H B, Huang R X, et al. Red phosphor LiEu( SiO2)(1/6) W2O8 particles prepared by spray pyrolysis [J]. Chin. J. Lumin.(发光学报), 2007, 28(5):715-719 (in Chinese) .[7] Li B, Shen L J, Zhou Y B, et al. Luminescent properties of YVO4·xTiO2∶Eu3+ [J]. Chin. J. Lumin.(发光学报), 2009, 30(6):758-762 (in Chinese).[8] Tang A, Zhang D F, Yang L. Photoluminescence characterization of a novel red-emitting phosphor In2(MoO4)3∶Eu3+ for white light emitting diodes [J]. J. Lumin., 2012, 132(6):1489-1492.[9] Barros B S, de Lima A C, da Silva Z R, et al. Synthesis and photoluminescent behavior of Eu3+-doped alkaline-earth tungstates [J]. J. Phys. chem. Solids, 2012, 73(5):635-640.[10] Gao Y, Lü Q, Wang Y, et al. Effects of doping concentration and sintering temperature on luminescence of CaWO4∶Eu3+phosphor [J]. Acta Phys. Sinica (物理学报), 2012, 61(7):077802-1-9 (in Chinese).[11] Yang Z P, Song Y C, Han Y, et al. Synthesis and luminescence properties of a novel red Sr2ZnMoO6∶Sm3+ phosphor [J]. Chin. J. Lumin.(发光学报), 2012, 33(6):586-590 (in Chinese).[12] Li L Z, Yan B, Lin L X, et al. Solid state synthesis, microstructure and photoluminescence of Eu3+ and Tb3+ activated strontium tungstate [J]. J. Mater. Sci.: Mater. Electron., 2011, 22(8):1040-1045.[13] Yan B, Lin L, Wu J H, et al. Photoluminescence of rare earth phosphors Na0.5Gd0.5WO4∶RE3+ and Na0.5Gd0.5(Mo0.75-W0.25)O4∶RE3+(RE=Eu, Sm, Dy) [J]. J. Fluoresc., 2011, 21(1):203-211.[14] Marques A P A, Tanaka M T S, Longo E, et al. The role of the Eu3+ concentration on the SrMoO4∶Eu3+ phosphor properties: Synthesis, characterization and photophysical studies [J]. J. Fluoresc., 2011, 21(3):893-899.[15] Li L L, Shen X Q, Li L, et al. Preparation and characterization of Li0.25Sr0.5(MoO4)∶Eu3+0.25 red-emitting phosphors for white LEDs by organic gel-thermal decomposition process [J]. J. Sol-Gel Sci. Technol., 2011, 57(2):198-203.[16] Nimishe P, Dhoble S J. Synthesis and photoluminescence characterization of Ce3+ and Dy3+ activated ALa(WO4)2(A=Na and Li) novel phosphors [J]. Bull. Mater. Sci., 2011, 34(5):1119-1125.[17] Tang H X, Lü S C . Preparation and luminescent properties of SrMoO4∶Eu3+ phosphor for light emitting diode [J]. Acta Phys. Sinica (物理学报), 2011, 60(3):037805-1-6 (in Chinese).[18] Ren Y D, Lü S C. Excitation spectrum intensity adjustment of SrWO4∶Eu3+ red phosphors for light-emitting diode [J]. Acta Phys. Sinica (物理学报), 2011, 60(8):087804-1-6 (in Chinese).[19] Meng Q Y, Zhang Q, Li M, et al. Study of concentration dependence of luminescent properties for Eu3+ doped CaWO4 red phosphors [J]. Acta Phys. Sinica (物理学报), 2012, 61(10):107804-1-8(in Chinese).