SUN Qiong, SUN Xian-miao, LI Yang, DONG Li-feng. Photoelectrical Properties of Ti<sub>O</sub>2 Nanorods with An Array-cluster Double-layered Structure[J]. Chinese Journal of Luminescence, 2013,(1): 61-65
SUN Qiong, SUN Xian-miao, LI Yang, DONG Li-feng. Photoelectrical Properties of Ti<sub>O</sub>2 Nanorods with An Array-cluster Double-layered Structure[J]. Chinese Journal of Luminescence, 2013,(1): 61-65 DOI: 10.3788/fgxb20133401.0061.
Photoelectrical Properties of TiO2 Nanorods with An Array-cluster Double-layered Structure
) was used as an inorganic titanium precursor to synthesize TiO
2
nanorods on a transparent
conductive fluorine-doped tin oxide (FTO) substrate by a facile hydrothermal process. The TiO
2
nanorod film was rutile phase and exhibited an array-cluster double-layered structure. Under the illumination of a solar simulator
the short-circuit photocurrent density of TiO
2
nanorods maximized at 0.17 mA/cm
2
which was over twice that of samples originating from organic titanium isopropoxide [Ti(
i
Pro)
4
] under the same conditions. Multi-dimensional structure and the participation of inorganic oxysulfate (OSO
4
4-
) anion contribute to the enhanced photocurrent response of TiO
2
nanorod films.
关键词
Keywords
references
Chen H. Calculations of optical properties in anatase TiO2 [J]. Chin. J. Lumin.(发光学报), 2009, 30(5):697-701 (in Chinese).
Yang X, Qu Y, Fan Y, et al. Y-branched TiO2 nanotubes prepared by electrochemical anodization [J]. Chin. J. Lumin.(发光学报), 2012, 33(3):269-274 (in Chinese).
Hirano M, Nakahara C, Ota K, et al. Direct formation of zirconia-doped titania with stable anatase-type structure by thermal hydrolysis [J]. J. Am. Ceram. Soc., 2002, 85(5):1333-1335.
Peng T, Zhao D, Dai K, et al. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photoca-talytic activity [J]. J. Phys. Chem. B, 2005, 109(11):4947-4952.
Chu S Z, Wada K, Inoue S, et al. Fabrication and structural characteristics of ordered TiO2-Ru(-RuO2) nanorods in porous anodic alumina films on ITO/glass substrate [J]. J. Phys. Chem. B, 2003, 107(37):10180-10184.
Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells [J]. J. Am. Chem. Soc., 2009, 131(11):3985-3990.
Lv M, Zheng D, Ye M, et al. Densely aligned rutile TiO2 nanorod arrays with high surface area for efficient dye-sensitized solar cells [J]. Nanoscale, 2012, 4(19):5872-5879.
Liao W P, Hsu S C, Lin W H, et al. Hierarchical TiO2 nanostructured array/P3HT hybrid solar cells with interfacial modification [J]. J. Phys. Chem. C, 2012, 116(30):15938-15945.
Wang H, Bai Y, Zhang H, et al. CdS quantum dots-sensitized TiO2 nanorod array on transparent conductive glass photoelectrodes [J]. J. Phys. Chem. C, 2010, 114(39):16451-16455.
Hirano M, Ota K, Iwata H. Direct formation of anatase (TiO2)/silica (SiO2) composite nanoparticles with high phase stability of 1 300 ℃ from acidic solution by hydrolysis under hydrothermal condition [J]. Chem. Mater., 2004, 16(19):3725-3732.
Li W, Bai Y, Liu C, et al. Highly thermal stable and highly crystalline anatase TiO2 for photocatalysis [J]. Environ. Sci. Technol., 2009, 43(14):5423-5428.
Zhou Z, Fan J, Wang X, et al. Effect of highly ordered single-crystalline TiO2 nanowire length on the photovoltaic perfor-mance of dye-sensitized solar cells [J]. ACS Appl. Mater. Interf., 2011, 3(11):4349-4353.