LIU Zi-chuan, ZHENG Jing-tang, ZHAO Dong-feng, WU Ming-bo. Effects of Forbidden Bandwidth and Optical Absorption Coeffcient on Photocatalytic Ability of TiO<sub>2</sub>[J]. Chinese Journal of Luminescence, 2012,33(12): 1329-1334
LIU Zi-chuan, ZHENG Jing-tang, ZHAO Dong-feng, WU Ming-bo. Effects of Forbidden Bandwidth and Optical Absorption Coeffcient on Photocatalytic Ability of TiO<sub>2</sub>[J]. Chinese Journal of Luminescence, 2012,33(12): 1329-1334 DOI: 10.3788/fgxb20123312.1329.
Effects of Forbidden Bandwidth and Optical Absorption Coeffcient on Photocatalytic Ability of TiO2
The effects of band structure and optical properties of TiO
2
doped Ag
+
Fe
3+
Pt
4+
La
3+
ions were analyzed by using Materials Studio. The molecular simulation shows that metallic ion doping can make the forbidden bandwidth of TiO
2
narrow
the absorption wavelength of TiO
2
red-shift
and the optical absorption coefficient increase in the same light condition. The changes affect the photocatalytic ability of TiO
2
. Under 254 nm UV light
TiO
2
shows the best photocatalytic ability when the forbidden bandwidth is 1.09 eV
and the higher optical absorption coefficient.
关键词
Keywords
references
Gao L, Zheng S, Zhang Q H. The Photocatalytic Material and Application of Nano TiO2 [M]. Beijing: Chemistry Industry Press, 2002:287-288 (in Chinese).
Cui Y M, Zhang W B, Miao H, et al. New progress in the research on the modification of TiO2 thin film [J]. Ind. Water. Treat.(工业水处理), 2011, 31(4):1-4 (in Chinese).
Ma M Y, Li Y J, Chen W, et al. Preparation and photoactivity of Fe-TiO2 nanocrystalline composites by miniemulsion method [J]. Chin. J. Environ. Eng.(环境工程学报), 2010, 4(5):1041-1046 (in Chinese).
Luo T Y, Wei Z P, Li J H, et al. Synthesis and characterization of CdS/ZnO nano-composites structure and enhanced photocatalytic [J]. Chin. J. Lumin.(发光学报), 2011, 32(7):680-685 (in Chinese).
Zhao H S, Guo Z B, Li Z Q, et al. Preparation and visible light photocatalytic activity of nitrogen-doped nano-TiO2 powders [J]. J. Mater. Eng.(材料工程), 2011, 3:16-19 (in Chinese).
Jing L Q, Sun X J, Cai W M, et al. The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity [J]. J. Phys. Chem. Solids, 2003, 64(4):615-623.
Zhang P Y, Yu G, Jiang Z P. Preparation and photocatalytic performance of fixed titanium dioxide film [J]. China Environ. Sci.(中国环境科学), 2000, 20(5):436-440 (in Chinese).
Li X D, Liu H L, Jiang Z H, et al. Preparation of fixed TiO2 film and performance of photocatalytic oxidation [J]. J. Harbin. Inst. Technol.(哈尔滨工业大学学报), 2004, 36(1):79-83 (in Chinese).
Hidalgo M C, Sakthivel S, Bahnemann D. Highly photoactive and stable TiO2 coatings on sintered glass [J]. Appl. Catal. A: General, 2004, 277(1-2):183-189.
Ryu C S, Kim M S, Kim B W. Photodegradation of alachlor with the TiO2 film immobilised on the glass tube in aqueous solution [J]. Chemosphere, 2003, 53(7):765-771.
Zhu M, Lai G X, Huang F, et al. Preparation and study of TiO2 nanocrystals/hollow glass microsphere composite fillers [J]. Paint. Coat. Ind.(涂料工业), 2011, 41(6):14-17 (in Chinese).
Zhang J P, Sun Z M, Shi L Y, et al. Preparation of TiO2 Film on stainless steel webnet and the degradation of formaldehyde [J]. J. Inorg. Mater.(无机材料学报), 2005, 20(5):1243-1249 (in Chinese).
Zeng Q G, Le T, Zou H, et al. Temperature effect on the structure and optical properties of Eu/TiO2 nanomaterials [J]. Chin. J. Lumin.(发光学报), 2011, 32(4):358-362 (in Chinese).
Shi W J, Zheng J T, Hu Y, et al. Influence of Ho doping on the crystal structure and photocatalytic activity of TiO2 [J]. J. Chin. Ceram. Soc.(硅酸盐学报), 2007, 35(2):182-186 (in Chinese).
Jiang X L, Ji Y C, Fan Y H, et al. Preparation and visible-light photocatalysis property of yttrium-doped ordered porous TiO2 thin films [J]. J. Chin. Ceram. Soc.(硅酸盐学报), 2012, 40(4):555-561 (in Chinese).
Yang J C, Kim Y C, Shul Y G, et al. Characterization of photoreduction Pt/TiO2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO2 catalysts [J]. Appl. Surf. Sci., 1997, 121:525-529.
Kwon Y T, Song K Y, Lee W I, et al. Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction [J]. J. Catal., 2000, 191(1):192-199.
Wang H D, Wan W. Study on the metal doped anatase TiO2 by first principles [J]. Mater. Rev.(材料导报), 2011, 25(7):139-133 (in Chinese).
Zhao Z Y, Liu Q J, Zhu Z Q, et al. First-principles calculation of electronic structure and optical properties of anatase TiO2 [J]. Chin. J. Semicond.(半导体学报), 2007, 28(10):1555-1561 (in Chinese).
Chen H. Calculations of optical properties in anatase TiO2 [J]. Chin. J. Lumin.(发光学报), 2009, 30(5):697-701 (in Chinese).
Liu Q J, Liu Z T, Feng L P, et al. First-principle calculation of anatase TiO2 [J]. J. Qingdao Univ. of Sci. Technol. (青岛科技大学学报), 2010, 31(2):111-115 (in Chinese).
Yin C H, Zhu S S, Zhang Y W, et al. Influence of doping iron group elements on electronic structure and photocatalytic activity of TiO2 [J]. J. Synthetic Crystals (人工晶体学报), 2011, 40(3):662-667 (in Chinese).
Liu X J, Liu Z S, Liu G, et al. First-principles study of electronic structure and optical properties of Pt-doped anatase TiO2 [J]. Jiangxi Science (江西科学) , 2008, 26(5):727-731 (in Chinese).
Ao T G, Hou Q Y, Ying C. Effects of high La doping anatase TiO2 on electronic structure and absorption spectrum from first principles [J]. Titanium Industry Progress (钛工业进展), 2012, 29(1):13-18 (in Chinese).
Robertson J, Xiong K, Clark J. Band structure of functional oxides by screened exchange and the weighteddensity appmxi-marion [J]. Phys. Stat. Sol. B, 2006, 243(9):2054-2070.
Effect of Interfacial Modification for TiO2-based Planar Perovskite Solar Cells Using NaTFSI
Review on Progress of Quantitative Photoacoustic Tomography
Improvement of TiO2 Cathode Buffer Layer to The Performance of Rubrene/C70 Organic Solar Cells
Preparation and Characterization of TiO2: Tm,Yb Visible Light Responsive Nano-photocatalyst
Photocatalytic Degradation of Indoor Formaldehyde by Er3+:YAlO3/TiO2 Photocatalyst Under Visible Light Irradiation
Related Author
Wei-hai SUN
Wei-dong ZENG
Guo-xin HUA
Ruo-wei HE
Hui-ying YAN
An-ling TONG
Yi-chen LIU
Heng-hui CHEN
Related Institution
Engineering Research Center of Environment-friendly Functional Materials, Ministry of Education, Fujian Key Laboratory of Photoelectric Functional Materials, Institute of Materials Physical Chemistry, College of Materials Science and Engineering, Huaqiao University
Department of Electronic and Communication Engineering, North China Electric Power University
Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University
Key Laboratory of The Three Gorges Reservoir Region's Eco-Environment, Chongqing University
Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University