CHEN Xiao-hui, WANG Xiu-ying, ZHAO Jia-long. Temperature-dependent Photoluminescence of ZnCuInS Quantum Dots[J]. Chinese Journal of Luminescence, 2012,33(9): 923-928
CHEN Xiao-hui, WANG Xiu-ying, ZHAO Jia-long. Temperature-dependent Photoluminescence of ZnCuInS Quantum Dots[J]. Chinese Journal of Luminescence, 2012,33(9): 923-928 DOI: 10.3788/fgxb20123309.0923.
Temperature-dependent Photoluminescence of ZnCuInS Quantum Dots
The photoluminescence (PL) spectra of ZnCuInS quantum dots (QDs) were measured in the temperature range from 100 to 300 K. The temperature dependences of the PL energy
linewidth
and intensity of the ZnCuInS QDs were investigated in detail. An anomalous increase in band gap of ZnCuInS QDs with temperature was observed. The full width at half maximum of the PL and thermal activation energy
E
a
of ZnCuInS QDs were 300 and 100 meV
respectively. These results suggested that the PL in the ZnCuInS QDs originated from the recombination of many kinds of defect-related emission centers in the interior and on the surface of the QDs.
关键词
Keywords
references
Coe S, Woo W K, Bawendi M G, et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J]. Nature, 2002, 420(6917):800-803.
Tessler N, Medvedev V, Kazes M, et al. Efficient near-infrared polymer nanocrystal light-emitting diodes [J]. Science, 2002, 295(5559):1506-1508.
Xu T T, Qiao Q Q. Conjugated polymer-inorganic semiconductor hybrid solar cells [J]. Energy Environ. Sci., 2011, 4(8):2700-2720.
Talapin D V, Lee J S, Maksym V, et al. Prospects of colloidal nanocrystals for electronic and optoelectronic applications [J]. Chem. Rev., 2010, 110(1):389-458.
Zhang Y L, Zeng Q H, Kong X G. The influence of bioconjugate process on the photoluminescence properties of water-soluble CdSe/ZnS core-shell quantum dots capped with polymer [J]. Chin. J. Lumin.(发光学报), 2010, 31(1):101-104 (in Chinese).
Zhong H Z, Zhou Y, Ye M, et al. Controlled synthesis and optical properties of colloidal ternary chalcogenide CuInS2 nanocrystals [J]. Chem. Mater., 2008, 20(20):6434-6443.
Xie R G, Rutherford M, Peng X, et al. Formation of high-quality Ⅰ -Ⅲ-Ⅵ semiconductor nanocrystals by tuning relative reactivity of cationic precursors [J]. J. Am. Chem. Soc., 2009, 131(15):5691-5697.
Zhong H Z, Lo S S, Mirkovic T, et al. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties [J]. ACS Nano, 2010, 4(9):5253-5262.
Li L, Pandey A, Werder D J, et al. Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission [J]. J. Am. Chem. Soc., 2011, 133(5):1176-1179.
Wang X Y, Liu X Y, Zhao J L. Synthesis and luminescence properties of CuInS2 nanocrystals [J]. Chin. J. Lumin.(发光学报), 2012, 33(1):7-11 (in Chinese).
Zhang J, Xie R G, Yang W S, et al. A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters [J]. Chem. Mater., 2011, 23(14):3357-3361.
Zhang W J, Zhong X H. Facile synthesis of ZnS-CuInS2-alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst [J]. Inorg. Chem., 2011, 50(9):4065-4072.
Feng J, Sun M, Yang F, et al. A facile approach to synthesize high-quality ZnxCuyInS1.5+x+0.5y nanocrystal emitters [J]. Chem. Commun., 2011, 47(22):6422-6424.
Zhang Y, Xie C, Su H P, et al. Employing heavy metal-free colloidal quantum dots in solution-processed white light-emitting diodes [J]. Nano Lett., 2011, 11(2):329-332.
Tan Z, Zhang Y, Xie C, et al. Near-band-edge electroluminescence from heavy-metal-free colloidal quantum dots [J]. Adv. Mater., 2011, 23(31):3553-3558.
Wang Y C, Wang M, Su X Y, et al. First principles on the electron structure and optical properties of the Mg-doped CdSe system [J]. Chin. J. Lumin.(发光学报), 2010, 31(6):842-847 (in Chinese).
Morello G, de Giorgi M, Kudela S, et al. Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots [J]. J. Phys. Chem. C, 2007, 111(16):5846-5849.
Wuister S F, van Houselt A, de Mello Donegá C, et al. Temperature antiquenching of the luminescence from capped CdSe quantum dots [J]. Angew. Chem. Int. Ed., 2004, 43(23):3029-3033.
Ramvall P, Tanaka S, Nomura S, et al. Confinement induced decrease of the exciton-longitudinal optical phonon coupling in GaN quantum dots [J]. Appl. Phys. Lett., 1999, 75(13):1935-1937.
Wan J Z, Brebner J L, Leonelli R, et al. Temperature dependence of free-exciton photoluminescence in crystalline GaTe [J]. Phys. Rev. B, 1993, 48(8):5197-5201.
Hsu T M, Lin J H. Anomalous temperature-dependent band gaps in CuInS2 studied by surface-barrier electroreflectance [J]. Phys. Rev. B, 1988, 37(8):4106-4110.
Yakushev M V, Mudryi A V, Victorov I V, et al. Energy of excitons in CuInS2 single crystals [J]. Appl. Phys. Lett., 2006, 88(1):011922-1-3.
Takagahara T. Electron-phonon interactions and excitonic dephasing in semiconductor nanocrystals [J]. Phys. Rev. Lett., 1993, 71(17):3577-3580.
Jing P T, Zheng J J, Ikezawa M, et al. Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots [J]. J. Phys. Chem. C, 2009, 113(31):13545-13550.
Nakamura H, Kato W, Uehara M, et al. Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system [J]. Chem. Mater., 2006, 18(14):3330-3335.
Castro S L, Bailey S G, Raffaelle R P, et al. Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor [J]. J. Phys. Chem. B, 2004, 108(33):12429-12435.
High Color Rendering White-light-emitting Diodes Based on Cu-doped ZnInS and ZnCdS Quantum Dots
Preparation and Photoluminescence Properties of Mn Doped Zn-In-S Quantum Dots
Shell-dependent Thermal Stability of CdSe Core/shell Quantum Dot Photoluminescence
Synthesis and Luminescence Properties of CuInS2 Nanocrystals
Advances in Multi-dimensional Control of Upconversion Emission from Er3+-riched Nanocrystals
Related Author
YUAN Xi
MA Rui-xin
SHAN Mei-ling
ZHAO Jia-long
LI Hai-bo
LIU Yang
HUA Jie
YUAN Xi
Related Institution
Key Laboratory of Functional Materials Physics and Chemistry of The Ministry of Education, Jilin Normal University
College of Information and Technology, Jilin Normal University
Key Laboratory of Functional Materials Physics and Chemistry of The Ministry of Education, Jilin Normal University
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications