WANG Xin-jian, SONG Hang, LI Da-bing, JIANG Hong, LI Zhi-ming, MIAO Guo-qing, CHEN Yi-ren, SUN Xiao-jun. Study of AlN Films Doped by Si Thermal Diffusion[J]. Chinese Journal of Luminescence, 2012,33(7): 768-773
WANG Xin-jian, SONG Hang, LI Da-bing, JIANG Hong, LI Zhi-ming, MIAO Guo-qing, CHEN Yi-ren, SUN Xiao-jun. Study of AlN Films Doped by Si Thermal Diffusion[J]. Chinese Journal of Luminescence, 2012,33(7): 768-773 DOI: 10.3788/fgxb20123307.0768.
This paper deals with the characteristics of aluminium nitride (AlN) films doped by silicon (Si) thermal diffusion. The films are analyzed by energy dispersive X-ray spectroscopy (EDS) and high-temperature dependent electrical conductivity. The results of EDS show that the Si element is successfully doped into the AlN films using SiN
x
as the diffusion source at the temperature of 1 250 ℃. The high-temperature current-voltage (I-V) measurements show that the electrical properties of the AlN films can be prominently improved by Si thermal diffusion
and at the measured temperature of 460 ℃ their electrical conductivities increase from 1.9×10
-3
S·m
-1
to 2.1×10
-2
S·m
-1
after the Si thermal diffusion. The high-temperature dependence of thermal conductivity suggests that the activation energies of V
3+
N
and Si are about 1.03 eV and 0.45 eV
respectively.
关键词
Keywords
references
Strite S, Morkoc H. GaN, AlN, and InN: A review [J]. J. Vac. Sci. Technol. B, 1992, 10(4):1237-1241.
Ambacher O. Growth and applications of group Ⅲ-nitrides [J]. J. Phys. D, 1998, 31(20):2653-2710.
Stampfl C, Van de walle C G. Theoretical investigation of native defects, impurities, and complexes in aluminum nitride [J]. Phys. Rev. B, 2002, 65(15):155212-1-7.
Boguslawski P, Bernholc J. Doping properties of C, Si, and Ge impurities in GaN and AlN [J]. Phys. Rev. B, 1997, 56(15):9496-9505.
Pantha B N, Sedhain A, Li J, et al. Probing the relationship between structural and optical properties of Si-doped AlN [J]. Appl. Phys. Lett., 2010, 96(13):131906-1-3.
Kanechika M, Kachi T. N-type AlN layer by Si ion implantation [J]. Appl. Phys. Lett., 2006, 88(20):202106-1-3.
Wu J Q. When group-Ⅲ nitrides go infrared: New properties and perspectives [J]. J. Appl. Phys., 2009, 106(1): 011101-1-5.
Ogata H, Kanayama K, Ohtani M, et al. Diffusion of aluminum into silicon nitride films [J]. Thin Solid Films, 1978, 48(3):333-338.
Nakarmi M L, Nepal N, Ugolini C, et al. Correlation between optical and electricalproperties of Mg- doped AlN epilayers [J]. Appl. Phys. Lett., 2006, 89(15):152120.
Taniyasu Y, Kasu M, Makimoto T. Increased electron mobility in n-type Si-doped AlN by reducing dislocation density [J]. Appl. Phys. Lett., 2006, 89(18):182112-1-3.
Chin V W L, Tansley T L, Osotchan T. Electron mobilities in gallium, indium, and aluminum nitrides [J]. J. Appl. Phys., 1994, 75(11):7365-7372.
Albrecht J D, Wang R P, Ruden P P, et al. Monte Carlo calculation of electron transport properties of bulk AlN [J]. J. Appl. Phys., 1998, 83(3):1446-1449.
Mattila T, Nieminen R M. Ab initio study of oxygen point defects in GaAs, GaN, and AlN [J]. Phys. Rev. B, 1996, 54(23):16676-16682.
van de Walle C G, Neugebauer J. First-principles calculations for defects and impurities: Applications to Ⅲ-nitrides [J]. J. Appl. Phys., 2004, 95(8):3851-3879.
Hermann M, Furtmayr F, Bergmaier A. Highly Si-doped AlN grown by plasma-assisted molecular-beam epitaxy [J]. Appl. Phys. Lett., 2005, 86(19):192108-1-3.