LI Kai-yu, WANG Ru-zhi, QU Ming-hao, ZHANG Ying, YAN Hui. Downconversion Materials Preparation and The Research of Conversion Efficiency in Pr<sup>3+</sup>, Yb<sup>3+</sup> Co-doped YPO<sub>4</sub>[J]. Chinese Journal of Luminescence, 2012,(5): 486-491
LI Kai-yu, WANG Ru-zhi, QU Ming-hao, ZHANG Ying, YAN Hui. Downconversion Materials Preparation and The Research of Conversion Efficiency in Pr<sup>3+</sup>, Yb<sup>3+</sup> Co-doped YPO<sub>4</sub>[J]. Chinese Journal of Luminescence, 2012,(5): 486-491 DOI: 10.3788/fgxb20123305.0486.
Downconversion Materials Preparation and The Research of Conversion Efficiency in Pr3+, Yb3+ Co-doped YPO4
downconversion phosphor powders were prepared by solid state reaction. When excitation at 450 nm
the effects of different Yb
3+
mole fractions (0%
1%
2%
4%
20%
30%) on the conversion efficiency are studied. Results shows that because of the difference of energy transfer efficiency between Pr
3+
and Yb
3+
the samples with various Yb
3+
doping concentrations have different fluorescence intensity. It is also found that the energy transfer process of the downconversion luminescence in samples is Pr
3+
:
3
P
0
Yb
3+
:
2
F
5/2
+
2
F
5/2
. From photoluminescence spectra measurement
the optimal doping mole fraction of Yb
3+
is 2%. The results indicate that Pr
3+
Yb
3+
co-doped YPO
4
downconversion phosphor is a kind of potential material which may be used to improve the solar cell efficency.
关键词
Keywords
references
Tuerxun Aidilibike, Deng Kaimo, Chen Yonghu, et al. Highly efficient near-infrared quantum cutting in LaF3:Ho3+, Yb3+ for solar cells [J]. Chin. J. Lumin.(发光学报), 2011, 32(11):1133-1138 (in Chinese).[2] Trupke T, Green M A, Wurfel P. Improving solar cell efficiencies by down-conversion of high-energy photons [J]. J. Appl. Phys., 2002, 92(3):1668-1674.[3] Serrano D, Braud A, Doualan J L, et al. Ytterbium sensitization in KY3F10:Pr3+, Yb3+ for silicon solar cells efficiency enhancement [J]. Optical Materials, 2011, 33(7):1028-1031.[4] Richards B S. Luminescent layers for enhanced silicon solar cell performance:Down-conversion [J]. Solar Energy Materials and Solar Cells, 2006, 90(9):1189-1207.[5] van Wijngaarden J T, Scheidelaar S, Vlugt T J H, et al. Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple [J]. Physical Review B, 2010, 81(15):155112-1-6.[6] Liu Chunxu, Wang Pengcheng, Luo Yongshi, et al. Tb3+-Er3+ couples as spectral converters in NaYF4 for GaAs solar cells [J]. Chin. J. Lumin.(发光学报), 2011, 32(11):1120-1125 (in Chinese).[7] Aarts L, van der Ende B, Reid M F, et al. Downconversion for solar cells in YF3:Pr3+, Yb3+ [J]. Spectroscopy Letters, 2010, 43(5):373-381.[8] Chen X B, Yang J G, Zhang C L, et al. Infrared quantum-cutting analysis of Er0.3Gd0.7VO4 crystal for solar cell application [J]. Acta Physica Sinica (物理学报), 2010, 59(11):8191-8199 (in Chinese).[9] Chen X P, Huang X Y, Zhang Q Y. Concentration-dependent near-infrared quantum cutting in NaYF4:Pr3+,Yb3+ phosphor [J]. J. Appl. Phys., 2009, 106(6):063518-1-3.[10] Yang G M, Zhou S M, Lin H, et al. Down-conversion near infrared emission in Pr3+,Yb3+ co-doped Y2O3 transparent ceramics [J]. Physica B: Condensed Matter, 2011, 406(19):3588-3591.[11] Vergeer P, Vlugt T J H, Kox M H F, et al. Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+ [J]. Physical Review B, 2005, 71(1):014119-1-11.[12] Zhang Q Y, Yang C H, Pan Y X. Cooperative quantum cutting in one-dimensional (YbxGd1-x)Al3(BO3)4:Tb3+ nanorods [J]. Appl. Phys. Lett., 2007, 90(2):021107-1-3.[13] Zhang Q Y, Yang C H, Jiang Z H, et al. Concentration-dependent near-infrared quantum cutting in GdBO3:Tb3+, Yb3+ nanophosphors [J]. Appl. Phys. Lett., 2007, 90(6):061914-1-3.[14] Zhang Q Y, Yang C H, Jiang Z H. Cooperative downconversion in GdAl3(BO3)4:RE3+, Yb3+(RE=Pr, Tb, and Tm) [J]. Applied Physics Letters, 2007, 91(5):051903-1-3.[15] Xie L C, Wang Y H, Zhang H J. Near-infrared quantum cutting in YPO4:Yb3+, Tm3+ via cooperative energy transfer [J]. Appl. Phys. Lett., 2009, 94(6):061905-1-3.[16] Chen D Q, Wang Y S, Yu Y L, et al. Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses [J]. J. Appl. Phys., 2008, 104(11):8989-8994.[17] Liu X F, Qiao Y B, Dong G P, et al. Cooperative downconversion in Yb3+-RE3+(RE=Tm or Pr) codoped lanthanum borogermanate glasses [J]. Optics Letters, 2008, 33(23):2858-2860.[18] Ye S, Zhu B, Luo J, et al. Enhanced cooperative quantum cutting in Tm3+-Yb3+ codoped glass ceramics containing LaF3 nanocrystals [J]. Optics Express, 2008, 16(12):8989-8994.[19] Ye S, Zhu B, Chen J X, et al. Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals [J]. Appl. Phys. Lett., 2008, 92(14):141112-1-3.[20] Wang Y S, Chen D Q, Yu Y L, et al. Near-infrared quantum cutting in transparent nanostructured glass ceramics [J]. Optics Letters, 2008, 33(16):1884-1886.[21] Chen D Q, Yu Y L, Wang Y S, et al. Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics [J]. J. Phys. Chem. C, 2009, 113(16):6406-6410.[22] Lin H, Chen D Q, Yu Y L, et al. Near-infrared quantum cutting in Ho3+/Yb3+ codoped nanostructured glass ceramic [J]. Optics Letters, 2011, 36(6):876-878.[23] Chen D Q, Yu Y L, Lin H, et al. Ultraviolet-blue to near-infrared downconversion of Nd3+-Yb3+ couple [J]. Optics Letters, 2010, 35(2):220-222.[24] Lin H, Zhou S M, Teng H, et al. Near infrared quantum cutting in heavy Yb doped Ce0.03Yb3xY(2.97-3x)Al5O12 transparent ceramics for crystalline silicon solar cells [J]. J. Appl. Phys., 2010, 107(4):876-878.[25] Lin H, Zhou S M, Hou X R, et al. Down-conversion from blue to near infrared in Tm3+-Yb3+ codoped Y2O3 transparent ceramics [J]. IEEE Photonics Technology Letters, 2010, 22(12):866-868.[26] Huang X Y, Zhang Q Y. Efficient near-infrared down conversion in Zn2SiO4:Tb3+, Yb3+ thin-films [J]. J. Appl. Phys., 2009, 105(5):053521-1-4.[27] de Sousa P C, Serra O A. Reverse microemulsion synthesis, structure, and luminescence of nanosized REPO4:Ln3+(RE=La, Y, Gd, or Yb, and Ln=Eu, Tm, or Er) [J]. J. Phys. Chem. C, 2011, 115(3):636-646.[28] Capelletti R, Baraldi A, Buffagni E, et al. Optical spectroscopy of YPO4 single crystals doped with Ho3+ [J]. Spectroscopy Letters, 2010, 43(5):382-388.[29] de Sousa P C, Serra O A. Red, green, and blue lanthanum phosphate phosphors obtained via surfactant-control led hydrothermal synthesis [J]. J. Lumin., 2009, 129(12):1664-1668.[30] Moine B, Hachani S, Ferid M. Energy transfer between Sm3+ and Er3+ in orthophosphate YPO4 [J]. J. Lumin., 2011, 131(10):2110-2115.[31] Lian R, Yin M, Zhang W P, et al. Chemical preparation, structure analysis and spectrum characteristics of YPO4:Pr3+ nanocrystal [J]. Chin. J. Lumin.(发光学报), 1999, 20(2):102-105 (in Chinese).[32] Lecointre A, Bessiere A, Bos A J J, et al. Designing a red persistent luminescence phosphor:The example of YPO4:Pr3+, Ln3+ (Ln=Nd, Er, Ho, Dy) [J]. J. Phys. Chem. C, 2011, 115(10):4217-4227.[33] Yuan J L, Zeng X Y, Zhao J T, et al. Energy transfer mechanisms in Tb3+, Yb3+ codoped Y2O3 downconversion phosphor [J]. J. Phys. D: Appl. Phys., 2008, 41(10):105406-1-6.[34] Chen H T, Yin M, Lian R, et al. Luminescence dependence upon concentration and temperature in YPO4:Pr3+ [J]. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2001, 21(2):151-154 (in Chinese).
Review of Advances in Large-area Perovskite Solar Cell Thin-film Fabrication Techniques
Near Infrared Optical Thermometry Along with Photothermal Conversion Ability Realized in BaY2O4∶Nd3+
Passivation of Perovskite Buried-interface Using Phenethylamine for Enhanced Solar Cell Performance
Advances in Rare Earth Doped Lead Halide Perovskite Luminescence, Optoelectronic Materials and Devices
Temperature Sensing Properties in NaScF4∶Yb3+/Er3+ Nanoparticles
Related Author
XU Zhentong
LIN Jie
HUANG Jingsong
JIANG Chengming
XIANG Guotao
DING Yongxi
ZHANG Yu
LIU Tao
Related Institution
Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford
College of Mechanical Engineering, Dalian University of Technology
Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications
State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications
College of Electronic Science and Engineering, Jilin University