LIU Ye, YU Fang-da, LIU Shu-sen, ZHAO Dan, HE Chun-feng, ZHENG Ke-zhi, QIN Wei-ping. Upconversion Luminescence of Eu<sup>3+</sup> in NaYbF<sub>4</sub>∶Tm<sup>3+</sup>,Eu<sup>3+</sup> Nanocrystals Induced by 980 nm Excitation[J]. Chinese Journal of Luminescence, 2012,(5): 476-480
LIU Ye, YU Fang-da, LIU Shu-sen, ZHAO Dan, HE Chun-feng, ZHENG Ke-zhi, QIN Wei-ping. Upconversion Luminescence of Eu<sup>3+</sup> in NaYbF<sub>4</sub>∶Tm<sup>3+</sup>,Eu<sup>3+</sup> Nanocrystals Induced by 980 nm Excitation[J]. Chinese Journal of Luminescence, 2012,(5): 476-480 DOI: 10.3788/fgxb20123305.0476.
Upconversion Luminescence of Eu3+ in NaYbF4∶Tm3+,Eu3+ Nanocrystals Induced by 980 nm Excitation
nanocrystals were synthesized by hydrothermal method. The crystalline phase
morphology
and optical properties were characterized by X-ray diffraction
scanning electron microscope and luminescent spectra. The samples are nano-rods with uniform size distribution. Their length is 500 nm and diameter is 200 nm on average. Under 980 nm near-infrared laser excitation
ultraviolet and visible upconversion luminescence of Eu
3+
was obtained. In the codoped NaYbF
4
nano-rods
the energy transfer from Tm
3+
to Eu
3+
and the bridging effect of Tm
3+
ions play important roles in populating the high-energy excited states of Eu
3+
. Furthermore
the upconversion emissions from
3
P
0
7
F
j
(
j
=0
1
2) of Eu
3+
were observed for the first time.
关键词
Keywords
references
Auzel F. Computeur quantique par transfer d’énergie de Yb3+,Tm3+ dans an tungstate mixte et dans un verre gemanate [J]. Comt. Rend., 1966, 263B:317-318.[2] Zhao Y, Fleming S. All-solid state and all-fiber blue upconversion laser [J]. Electron. Lett., 1996, 32(13):1199-1200.[3] Jiang S, Zhang Y, Lim K M, et al. NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA [J]. Nanotechnology, 2009, 20(15):155101-1-9.[4] Xiong L Q, Chen Z G, Tian Q W, et al. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors [J]. Anal. Chem., 2009, 81(21):8687-8694.[5] Kamimura M, Miyamoto D, Saito Y, et al. Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling [J]. Langmuir, 2008, 24(16):8864-8870.[6] Wang M, Mi C C, Wang W X, et al. Immunolabeling and nir-excited fluorescent imaging of HeLa cells by using NaYF4:Yb, Er upconversion nanoparticles [J]. ACS Nano., 2009, 3(6):1580-1586.[7] Richards B S. Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion [J]. IEEE Transaction on Electron Devices, 2007, 54(10):2679-2684.[8] Shalav A, Richards B S, Green M A. Luminescent layers for enhanced silicon solar cell performance: up-conversion [J]. Sol. Energ. Mat. Sol. C, 2007, 91(9):829-842.[9] Qin Weiping, Zhang Daisheng, Zhao Dan, et al. Near-infrared photocatalysis based on YF3:Yb3+,Tm3+/TiO2 core/shell nanoparticles [J]. Chem. Commun., 2010, 46:2304-2306.[10] Ran Yingying, Zhao Junwei, Kong Xianggui. Controlled synthesis and luminescence properties of NaYF4:Eu3+ nanoparticles/hexagonal prism [J]. Chin. J. Lumin.(发光学报), 2010, 31(4):556-560 (in Chinese).[11] Wang Guofeng, Qin Weiping, Zhang Jisen, et al. Enhancement of violet and ultraviolet upconversion emissions in Yb3+/Er3+-codoped YF3 nanocrystals [J]. Opt. Mater., 2008, 31(2):296-299.[12] Liu Chunxu, Wang Yang, Zhang Jisen, et al. Energy transfer of Tm3+-Er3+ couples in NaYF4 microcrystals [J]. Chin. J. Lumin.(发光学报), 2010, 31(6):812-815 (in Chinese).[13] Maciel G S, Biswas A, Prasad P N. Infrared-to-visible Eu3+ energy upconversion due to cooperative energy transfer from an Yb3+ ion pair in a sol-gel processed multi-component silica glass [J]. Opt. Commun., 2000, 178(1-3):65-69.[14] Jubera V, Garcia A, Chaminade J P, et al. Yb3+ and Yb3+-Eu3+ luminescent properties of the Li2Lu5O4(BO3)3 phase [J]. J. Lumin., 2007, 124(1):10-14.[15] Wang Lili, Xue Xiaojie, Qin Weiping, et al. Ultraviolet and violet upconversion fluorescence of europium (Ⅲ) doped in YF3 nanocrystals [J]. Opt. Lett., 2009, 34(18):2781-2783 .[16] Wang Lili, Qin Weiping, Wei Guodong, et al. Unusual radiative transitions of Eu3+ ions in Yb/Er/Eu tri-doped NaYF4 nanocrystals under infrared excitation [J]. Chem. Phys. Lett., 2010, 485(1-3):183-186.[17] Wang Guofeng, Qin Weiping, Zhang Jisen, et al. Controlled synthesis and luminescence properties from cubic tohexagonal NaYF4:Ln3+(Ln=Eu and Yb/ Tm) microcrystals [J]. J. Alloy. Compd., 2009, 475(1-2):452-455.[18] Wang Guofeng, Qin Weiping, Zhang Jisen, et al. Size-dependent upconversion luminescence in YF3:Yb3+/ Tm3+ nanobundles [J]. J. Fluorine Chem., 2008, 129(11):1110-1113.[19] Pollnau M, Gamelin D R, Luthi S R, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems [J]. Phys. Rev. B, 2000, 61(5):3337-3346.
White Up-conversion Emission of Hydrothermally Synthesized Hexagonal NaYbF4:Er3+/Tm3+
Bright Blue Upconversion Emission of LaF3:Yb3+,Tm3+ Nanoparticles
Progress on the Study of Nanoscale Rare Earth Luminescent Materials
Photoluminescence and Multifunctional Applications of NaGdMgTeO6∶Eu3+ Phosphors
Advances in Luminescence Thermal Enhancement of Rare Earth Activated Phosphors
Related Author
LIANG Li-fang
ZHUANG Jian-le
WU Hao
WANG Jing
WU Ming-mei
SU Qiang
ZHANG Ji-shuang
QIN Wei-ping
Related Institution
State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering,Sun Yat-Sen(Zhongshan) University
Department of Chemistry, Guangxi Teachers Education University
Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun 130033, China
Graduate School of Chinese Academy of Sciences
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science & Engineering, Jilin University