浏览全部资源
扫码关注微信
1. 宁波大学 光电子功能材料重点实验室,浙江 宁波,315211
2. 宁波大学 材料科学与化学工程学院,浙江 宁波,315211
Received:11 December 2011,
Revised:14 February 2012,
Published Online:10 April 2012,
Published:10 April 2012
移动端阅览
胡皓阳, 万云涛, 胡建旭, 夏海平, 张约品, 陈红兵. Tm<sup>3+</sup>掺杂CdWO<sub>4</sub>单晶的发光特性[J]. 发光学报, 2012,33(4): 377-382
HU Hao-yang, WAN Yun-tao, HU Jian-xu, XIA Hai-ping, ZHANG Yue-pin, CHEN Hong-bing. Optical Spectra of Tm<sup>3+</sup> -doped CdWO<sub>4</sub> Crystal[J]. Chinese Journal of Luminescence, 2012,33(4): 377-382
胡皓阳, 万云涛, 胡建旭, 夏海平, 张约品, 陈红兵. Tm<sup>3+</sup>掺杂CdWO<sub>4</sub>单晶的发光特性[J]. 发光学报, 2012,33(4): 377-382 DOI: 10.3788/fgxb20123304.0377.
HU Hao-yang, WAN Yun-tao, HU Jian-xu, XIA Hai-ping, ZHANG Yue-pin, CHEN Hong-bing. Optical Spectra of Tm<sup>3+</sup> -doped CdWO<sub>4</sub> Crystal[J]. Chinese Journal of Luminescence, 2012,33(4): 377-382 DOI: 10.3788/fgxb20123304.0377.
用坩埚下降法生长获得了尺寸为
25 mm90 mm、Tm
2
O
3
初始掺杂摩尔分数为0.5%的CdWO
4
单晶。晶体的颜色由上部血红色逐渐加深至下部的黑褐色。对不同部位的晶体薄片进行800 ℃的氧化处理
测定了处理前后不同部位的吸收光谱和FTIR红外光谱。经氧气退火处理后
由于氧空位缺陷减少
晶体的颜色明显变淡。在吸收光谱中观测到421
684
805 nm的吸收带。其中421 nm的吸收峰随退火温度的升高而逐步减弱
经800 ℃处理后基本消失。在808 nm激光二极管激发下
观察到中心波长为1.5 m和1.8 m的荧光发射
分别对应于Tm
3+
的
3
H
4
3
F
4
3
F
4
3
H
6
的能级跃迁。
Tm
3+
-doped CdWO
4
single crystal with a size of
25 mm90 mm was grown by the Bridgman method. The raw mole fraction of Tm
2
O
3
in crystal was 0.5%.The upper part of crystal grown at the final stage appears blood-red color
while the lower at the initial stage brown-blackness. The absorption and IR spectra of various parts of crystal before and after O
2
-annealing were characterized. The color of the crystal becomes weak after the crystal is treated at O
2
atmosphere due to the reducing of oxygen vacant defect. The peaks of 421
684 and 805 nm were observed in the absorption spectra. The peak of 421 nm becomes weak gradually with the increase of annealing tempearture
and almost disappears after 800 ℃. The emission spectra of single crystal were also investigated under the excitation of 808 nm at room temperature. A strong emission band at 1.50 m and a weak band at 1.80 m were observed
which corresponding to the
3
H
4
3
F
4
and
3
F
4
3
H
6
transitions of Tm
3+
respectively.
Wu Jianfeng, Jiang Shibin, Luo Tao, et al. Efficient thulium-doped ~2 m germanate fiber laser [J]. IEEE Photonics Technology Letters., 2006, 18(2):334-336.[2] Wang Yongchao, Xia Haiping, Zhang Jianli, et al. Fabrication and spectral properties of Tm3+-doped GeO2-AlF3-Na2O glasses [J]. J. OptoelectronicsLaser (光电子激光), 2011, 22(2):232-236 (in Chinese).[3] Lu Yanling, Wang Jun, Yang Yang, et al. The Czochralski growth of Tm:YAP laser crystal [J]. J. Shanghai Jiaotong University (上海交通大学学报), 2006, 40(5):864-868 (in Chinese).[4] Zhang Jisen, Zhang Liguo, Ren Jianyue, et al. Energy transition processes between Yb3+-Tm3+-Gd3+ in Gd3+,Yb3+ and Tm3+ co-doped fluoride nanocrystal [J]. Chin. J. Lumin.( 发光学报), 2011, 32(11):1093-1098 (in Chinese).[5] Chen Zhe, Liu Zhenyu, Zhao Dan, et al. Effect of reactants concentration on NaYF4:Yb3+, Tm3+ crystalline phase [J]. Chin. J. Lumin.(发光学报), 2011, 32(9):853-857 (in Chinese).[6] Ishii M, Kobayashi M. Single crystals for radiation detector [J]. Prog. Cryst. Growth Charact. Mater., 1991, 23:245-311.[7] Pustovarov V A, Krymov A L, Shulgin B V, et al. Some peculiarities of the luminescence of inorganic scintillators under excitation by high intensity synchrotron radiation [J]. Rev. Sci. Instrum., 1992, 63(6):3521-3522.[8] Zang J C. Research and development of tungstate scintillator single crystal materials [J]. Mater. Rev.(材料导报), 1995(6):35-38,50 (in Chinese).[9] Garces N Y, Chirila M M, Murphy H J, et al. Absorption, luminescence, and electron paramagnetic resonance of molybdenum ions in CdWO4 [J]. J. Phys. Chem. Solids, 2003, 64(7):1195-1200.[10] Wan Yuntao, Zhong Yuefeng, Xia Haiping. The growth and spectroscopic properties of Mn2+-doped CdWO4 single crystals [J]. J. OptoelectronicsLaser (光电子激光), 2011, 22(9):1360-1363 (in Chinese).[11] Yu Can, Xia Haiping, Wang Dongjie, et al. Growth of codoped CdWO4 crystals by Bridgman method and their optical spectra [J]. Spectroscopy and Spectral Analysis (光谱和光谱分析), 2011, 31(9):2350-2354 ( in Chinese).[12] Yu Can, Xia Haiping, Luo Caixiang, et al. Near-infrared emission of Bi-doped CdWO4 crystals grown by Bridgman method [J]. Chin. J. Laser (中国激光), 2010, 37(10):2610-2614 (in Chinese).[13] Chen Hongbing, Xiao Huaping, Xu Fang, et al. Optical homogeneity of CdWO4 single crystals grown by vertical Bridgman process [J]. J. Inorg. Mater.(无机材料学报), 2009, 24(5):1036-1040 (in Chinese).[14] Luo Caixiang, Xia Haiping, Yu Can, et al. Luminescence of Bi-doped CdWO4 single crystals [J]. Acta Phys. Sin.(物理学报), 2011, 60(7):077806-1-6 (in Chinese).[15] Chen Hongbing, Shen Qi, Fang Qishu, et al. Crystal defects of CdWO4 scintillation crystals grown by Bridgman method [J]. J. Syn. Crys.(人工晶体学报), 2010, 39(4):829-833 (in Chinese).[16] Lammers M J, Blasse G, Robertson D S. The luminescence of cadmium tungstate (CdWO4) [J]. Phys. State Solids, 1981, 63(2):569-572.[17] Liu Jinghe, Ge Jianjun, Zhu Zhongli, et al. Nd:NaY(WO4)2 crystal growth by Czochralski method [J]. J. Syn. Crys. (人工晶体学报), 2003, 32(6):657-660 (in Chinese).[18] Hanuza J, Maczka M, vander Mass J H. Vibrational properties of double tungstates of the MⅠMⅢ(WO4)2 family (MⅠ=Li, Na, K;MⅢ=Bi, Cr ) [J]. J. Solid State Chem., 1995, 117(1):177-188.[19] Zhou Xiuwen, Liu Tingyu, Zhang Qiren, et al. First-principles study of cadmium vacancy in CdWO4 crystal [J]. Solid State Sciences, 2009, 11(12):2071-2074.
0
Views
115
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution