WANG Fei, WANG Xiao-hua, WANG Jin-yan, FANG Dan, WEI Zhi-peng, FANG Xuan. Analysis on Thermal Effect of Optically Pumped Semiconductor Lasers with DBM by Finite Element Method[J]. Chinese Journal of Luminescence, 2012,33(3): 309-313
WANG Fei, WANG Xiao-hua, WANG Jin-yan, FANG Dan, WEI Zhi-peng, FANG Xuan. Analysis on Thermal Effect of Optically Pumped Semiconductor Lasers with DBM by Finite Element Method[J]. Chinese Journal of Luminescence, 2012,33(3): 309-313 DOI: 10.3788/fgxb20123303.0309.
Analysis on Thermal Effect of Optically Pumped Semiconductor Lasers with DBM by Finite Element Method
The reflectivity spectra of 808 nm/980 nm double band mirror (DBM) are characterized in the paper. According to the structure of the DBM
the thermal model of Optically Pumped Vertical-External-Cavity Surface Emitting Semiconductor Lasers (OPS-VECSELs) with DBM is constructed and the distribution of thermal load in the VECSEL wafer is presented. The thermal characterization of OPS-VECSELs with DBM is analyzed in detail by finite element method. The results indicate that VECSEL wafer with DBM has better thermal properties and poorer thermal performance than with DBM when they have the same reflectivity (
R
=99.96%). So VECSEL wafer with DBM is more suitable for making high power semiconductor laser than with DBM. The theoretical analysis results will be provided as theory reference for VECSEL wafer structure optimization and experimental.
关键词
Keywords
references
Kim Junyoun, Cho Soohaeng, Lim Seongjin, et al. Efficient blue lasers based on gain structure optimizing of vertical-externalcavity surface-emitting laser with second harmonic generation [J]. J. Appl. Phys., 2007, 101(3):033103-1-4.[2] Nicolas Laurand, Lee C L, Gu E, et al. Microlensed microchip VECSEL [J]. Opt. Express, 2007, 15(5):9341-9346.[3] Ghaya Baili, Loc Morvan, Mehdi Alouini, et al. Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations [J]. Opt. Lett., 2009, 34(21):3421-3423.[4] Liang Xuemei, Lu Jinkai, Cheng Liwen, et al. Structural design of vertical-external-cavity surface-emitting semiconductor laser with 920 nm [J]. Chin. J. Lumin. (发光学报), 2010, 31(1):79-85 (in English).[5] Lutgen S, Albrecht T, Brick P, et al. 8 W high-efficiency continuous-wave semiconductor disk laser at 1 000 nm [J]. Appl. Phys. Lett., 2003, 82(21):3620-3622.[6] Cheng Liwen, Liang Xuemei, Qin Li, et al. Theoretical analysis of key parameters of 980 nm optically pumped semiconductor vertical external cavity surface emitting laser [J]. Chin. J. Lumin. (发光学报), 2008, 29(4):713-715 (in Chinese).[7] Rudin B, Rutz A, Hoffmann M, et al. Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode [J].Opt. Lett., 2008, 33(22):2719-2721.[8] Kemp A J, Valentine G J, Hopkins J M, et al. Thermal management in vertical-external- cavity surface-emitting lasers: Finite-element analysis of a heatspreader approach [J]. IEEE J. Quantum Electron., 2005, 41(2):148-155.[9] Li Fan, Mahmoud Fallahi. Multichip vertical-external-cavity surface-emitting lasers: A coherent power scaling scheme [J]. Opt. Lett., 2006, 31(24):3612-3614.[10] Ye Zhicheng, Shu Yongchun, Cao Xue, et al. Strain effect on temperature dependent photoluminescence from InxGa1-xAs/ GaAs quantum wells [J]. Chin. J. Lumin. (发光学报), 2011, 32(2):164-168 (in Chinese).[11] Calvez S, Burns D, Dawson M D. Optimization of an optically pumped 1.3-m GaInNAs vertical-cavity surface-emitting laser [J]. IEEE Photon. Technol. Lett., 2002, 14(2):131-133.[12] Kim Kisung, Yoo J, Kim G, et al. Enhancement of pumping efficiency in a vertical-external-cavity surface-emitting laser [J]. IEEE Photon. Technol. Lett., 2007, 19(23):1925-1927.[13] Kemp A J, Hopkins John Mark, Maclean A J, et al. Thermal management in 2.3-m semiconductor disklasers: A finite element analysis [J]. IEEE J. Quantum Electron., 2008, 44(2):125-135.