ZHANG Deng-wei, MIAO Guo-qing. The Catalyst-free InP/InGaAs Core-shell Nanowires Growth on Silicon by Metal Organic Chemical Vapor Deposition[J]. Chinese Journal of Luminescence, 2012,33(3): 294-298
ZHANG Deng-wei, MIAO Guo-qing. The Catalyst-free InP/InGaAs Core-shell Nanowires Growth on Silicon by Metal Organic Chemical Vapor Deposition[J]. Chinese Journal of Luminescence, 2012,33(3): 294-298 DOI: 10.3788/fgxb20123303.0294.
The Catalyst-free InP/InGaAs Core-shell Nanowires Growth on Silicon by Metal Organic Chemical Vapor Deposition
Catalyst-free InP/InGaAs core-shell nanowires were grown on Si(100) substrates by metal-organic chemical vapor deposition. These nanowires have quite different properties to Au-catalyst core-shell nanowires. By using scanning electron microscope
we found that the catalyst at the top of the InP nanowires had been transformed into crystal after the InGaAs core grown on them. Meanwhile
the diameter of the nanowires has greatly increased with their length changed quite little. The X-ray diffraction patterns indicate that the transformation of the catalyst is attributed to the temperature rise under PH
3
protection before InGaAs core growth. By transmission electron microscope and energy dispersive X-ray spectroscopy
it is proved that the transformation of catalyst is prior to the InGaAs core growth and is cover by InGaAs which is same to the nanowires sidewall.
关键词
Keywords
references
Lauhon L J, Gudiksen M S, Wang C L, et al. Epitaxial core-shell and core-multishell nanowire heterostructure [J]. Nature, 2002, 420(6911):57-61.[2] Skld N, Karlsson L S, Larsson M W, et al. Growth and optical properties of strained GaAs-GaxIn1-xP core-shell nanowires [J]. Nano Lett., 2005, 5(10):1943-1947.[3] Duan X, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J]. Nature, 2001, 409(6816):66-69.[4] Qian F, Gradecak S, Li Y, et al. Core/multishell nanowire heterostructure as multicolor, high-efficiency light-emitting diodes [J]. Nano Lett., 2005, 5(11):2287-2291.[5] Minot E D, Kelkensberg F, Van Kouwen M, et al. Single quantum dot nanowire LEDs [J]. Nano Lett., 2007, 7(2):367-371.[6] Bao J, Zimmler M A, Capasso F, et al. Broadband ZnO single-nanowire light-emitting diode [J]. Nano Lett., 2006, 6(8):1719-1722.[7] Duan X, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers [J]. Nature, 2003, 421(6920):241-245.[8] Van Vugt L K, Ruhle S, Vanmaekelbergh D, et al. Phase-correlated nondirectional laser emission from the end facets of a ZnO [J]. Nano Lett., 2006, 6(12):2707-2711.[9] Dong Yajie, Tian Bozhi, Thomas J Kempa, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources [J]. Nature, 2007, 449(7164):885-889.[10] Thomas J K, Tian B Z, Kim D R, et al. Single and tandem axial p-i-n nanowire photovoltaic devices [J]. Nano Lett., 2008, 8(10):3456-3460.[11] Wei W, Bao X Y, Soci C, et al. Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection [J]. Nano Lett., 2009, 9(8):2926-2934.[12] Czaban J A, Thompson D A, LaPierre R R, et al. GaAs core-shell nanowires for photovaltaic applications [J]. Nano Lett., 2009, 9(1):148-154.[13] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells [J]. Nat. Mater., 2005, 4(6):455-459.[14] Gao P X, Song J, Liu J, et al. Nanowire prizoelectric nanogenerators on plastic substrates as flexible power source for nanodevices [J]. Adv. Mater., 2007, 19(1):67-72.[15] Cornet D M, LaPierre R R. InGaAs/InP core-shell and axial heterostructure nanowires [J]. Nanotechnology, 2007, 18(38):1-7.[16] Yu Shuzhen, Miao Guoqing, Jin Yixin, et al. The crystal structure and optical properties of InP nanowires grown on Si substrate [J]. Chin. J. Lumin. (发光学报), 2010, 31(5):767-772 (in Chinese).