LI Xiang, WEN Shang-sheng, YAO Ri-hui. Analysis of Optical Performance for Organic Solar Cell on Si Substrate[J]. Chinese Journal of Luminescence, 2012,33(3): 286-293
LI Xiang, WEN Shang-sheng, YAO Ri-hui. Analysis of Optical Performance for Organic Solar Cell on Si Substrate[J]. Chinese Journal of Luminescence, 2012,33(3): 286-293 DOI: 10.3788/fgxb20123303.0286.
Analysis of Optical Performance for Organic Solar Cell on Si Substrate
capping layer thickness and transport layer thickness on the optical absorption of active layer have been investigated by employing MATLAB and an optical model based on the transfer matrix method. The results reveal that the absorption of active layer is mainly attributed to its thickness which could be optimized by the microcavity effect. Furthermore
it demonstrates that active layer optical absorption can be effectively improved by adjusting the thickness of capping layer and transport layer. At last
the results show that the solar cells with 10 nm thick transport layer have superior optical and electrical performance than those without transport layer; the optimized thickness of ZnS layer and the thickness of Alq
3
layer are 30 nm and 60 nm
respectively. The research of optical properties of organic solar cell on Si substrate provides a theoretical basis to its future structural design and application.
关键词
Keywords
references
Li Weimin, Guo Jinchuan, Sun Xiuquan, et al. Effects of illumination intensity and temperature on double-layer heterojunction organic photovoltaic device performance [J]. Chin. J. Lumin. (发光学报), 2011, 32(7):724-728 (in Chinese).[2] Liu Yadong, Su Zisheng, Zhuang Taojun, et al. Significant enhanced performance of organic solar cells with F16CuPc as the anode buffer layer [J]. Chin. J. Lumin. (发光学报), 2011, 32(11):1176-1180 (in Chinese).[3] Wu Bing, Liu Pengyi, Li Yanwu, et al. Electron transport layers of inverted heterojunction organic solar cells [J]. Chin. J. Lumin. (发光学报), 2010, 31(5):753-756 (in Chinese).[4] Oyamada T, Sugawara Y, Terao Y, et al. Top light-harvesting organic solar cell using ultrathin Ag/MgAg layer as anode [J]. Jpn. J. Appl. Phys., 2007, 46(4A):1734-1735.[5] Blom P W M, Mihailetchi V D, Koster L J A, et al. Device physics of polymer: Fullerene bulk heterojunction solar cells [J]. Adv. Mater., 2007, 19(12):1551-1566.[6] Gilles D, Karen F, Tayebeh A, et al. Design of efficient organic tandem cells: On the interplay between molecular absorption and layer sequence [J]. J. Appl. Phys., 2007, 102(12):123109-1-3.[7] Gilles D, Karen F, Markus C, et al. Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells [J]. J. Appl. Phys., 2007, 102(5):054516-1-3.[8] Gui Yuchang, Wen Shangsheng, Liu Yanmei, et al. Optical and thermal analysis for polymer light-emitting diode as a flat panel light source [J]. Chin. J. Lumin. (发光学报), 2011, 32(8):809-815 (in Chinese).[9] Gui Yuchang, Wen Shangsheng, Zhang Jianping, et al. Analysis of light out-coupling efficiency in top-emitting polymer light-emitting devices [J]. Acta Optica Sinica (光学学报), 2011, 31(6):063102-1-7 (in Chinese).[10] Long Yongbing. Improving optical performance of inverted organic solar cells by microcavity effect [J]. Appl. Phys. Lett., 2009, 95(19):193301-1-3.[11] Persson N M, Arwin H, Inganas O. Optical optimization of polyfluorene-fullerene blend photodiodes [J]. J. Appl. Phys., 2005, 97(3):034503-1-3.[12] Kumar S, Shukla V K, Tripathi A. Ellipsometric investigations on the light induced effects on tris(8-hydroxyquinoline) aluminum (Alq3) [J]. Thin Solid Films, 2005, 477(1-2):240-243.[13] Lee Y J, Nichols W T, Kim D G, et al. Chemical vapour transport synthesis and optical characterization of MoO3 thin films [J]. J. Phys. D, 2009, 42(11):115419-1-5.[14] Kotlarski Jan D, Blom Paul W M, Koster Lambert J A, et al. Combined optical and electrical modeling of polymer:fullerene bulk heterojunction solar cells [J]. J. Appl. Phys., 2008, 103(8):084502-1-5.[15] Nam Young Min, Huh June, Jo Won Ho. Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells [J]. Sol. Eng. Mater. Sol. Cells, 2010, 94(6):1118-1124.[16] Tumbleston J R, Ko D H, Samulski E T, et al. Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer [J]. Appl. Phys. Lett., 2009, 94(4):043305-1-3.[17] Gilles D, Karen F, Markus C, et al. Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells [J]. J. Appl. Phys., 2007, 102(5):054516-1-7.[18] Huang Jinsong, Li Gang, Yang Yang. Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and -phenyl C61-butyric acid methyl ester blends [J]. Appl. Phys. Lett., 2005, 87(11):112105-1-3.[19] Meiss J, Riede M K, Leo K. Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes [J]. Appl. Phys. Lett., 2009, 94(1):013303-1-3.[20] Han Donggeon, Kim Hoyeon, Lee Soohyun, et al. Realization of efficient semitransparent organic photovoltaic cells with metallic top electrodes: Utilizing the tunable absorption asymmetry [J]. Opt. Exp., 2010, 18(23):A513-A521.[21] Cho Sanghwan, Song Youngwoo, Lee Joongu, et al. Weak-microcavity organic light-emitting diodes with improved light out-coupling [J]. Opt. Exp., 2008, 16(17):12632-12639.[22] Niggemann M, Glatthaar M, Lewer P, et al. Functional microprism substrate for organic solar cells: Symposium on thin film and nanostructured materials for photovoltaics held at the 2005 EMRS Meeting, Strasbourg . Lausanne: Elsevier SD, 2006.[23] Long Yongbing. Optimizing one-dimensional photonic-crystals based semitransparent organic solar cells by tailoring reflection phase shift within photonic bandgap [J]. Appl. Phys. Lett., 2011, 99(9):093310-1-3.