YIN Shou-gen, YANG Li-ying, XU Xin-rui, QIN Wen-jing. Enhancement of The Performance and Stability of Polymer Photovoltaic Cells by Cathode Buffer Layer[J]. Chinese Journal of Luminescence, 2012,33(3): 233-237
YIN Shou-gen, YANG Li-ying, XU Xin-rui, QIN Wen-jing. Enhancement of The Performance and Stability of Polymer Photovoltaic Cells by Cathode Buffer Layer[J]. Chinese Journal of Luminescence, 2012,33(3): 233-237 DOI: 10.3788/fgxb20123303.0233.
Enhancement of The Performance and Stability of Polymer Photovoltaic Cells by Cathode Buffer Layer
Enhanced performance and stability of polymer solar cells based on regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene [6
6]-phenyl-C
61
butyric acid methyl ester (PCBM) blend were obtained by using cesium carbonate (Cs
2
CO
3
)
lithium benzoate (C
6
H
5
COOLi)
poly(ethylene-oxide) (PEO) as cathode buffer layer. The improved performance may attribute to the cathode buffer layer which reduces the interface resistance between the active layer and the cathode and enhances the interior electric field that may result in efficient charge transportation. In addition
the cathode buffer layer may serve as an effective oxygen and moisture diffusion barrier for the organic solar cells. The organic cathode buffer layer is superior to the inorganic materials. Solution processed conjugated polymer bearing strong polar groups in the side chains is a promising candidate as an interlayer to improve the efficiency of electron collection and to reduce the ambience influence on the stability of polymer solar cells.
关键词
Keywords
references
Liu Q, Liu Z F, Zhang X Y, et al. Polymer photovoltaic cells based on solution-processable graphene and P3HT [J]. Adv. Funct. Mater., 2009, 19(6):894-904.[2] Liu Q, Liu Z F, Zhang X Y, et al. Organic photovoltaic cells based on an acceptor of soluble graphene [J]. Appl. Phys. Lett., 2008, 92(22):223303-1-3.[3] Liu Q, Mao J, Liu Z F, et al. Photovoltaic device based on poly(phenyleneethynylene)/SWNTs composite active layer [J]. Nanotechnology, 2008, 19(11):115601-1-5.[4] Yin B, Yang L Y , Liu Y S, et al. Solution-processed bulk heterojunction solar cells based on an oligothiophene derivative[J]. Appl. Phys. Lett., 2010, 97(2):023303-1-3.[5] Wu B, Liu B Y, Li Y W, et al. Electron transport layers of inverted heterojunction organic solar cells [J]. Chin. J. Lumin. (发光学报), 2010, 31(5):753-756 (in Chinese).[6] Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene [J]. Science, 1992, 258(5087):1474-1476.[7] Hiorns R C, de Bettignies R, Leroy J, et al. High molecular weights, polydispersities, and annealing temperatures in the optimization of bulk-heterojunction photovoltaic cells based on poly(3-hexylthiophene) or poly(3-butylthiophene) [J]. Adv. Funct. Mater., 2006, 16(17):2263-2273.[8] Hoppe H, Niggenmann M, Winder C, et al. Nanoscale morphology of conjugated polymer/ fullerene-based bulk-heterojunction solar cells [J]. Adv. Funct. Mater., 2004, 14(10):1005-1011.[9] Ma W, Yang C, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J]. Adv. Funct. Mater., 2005, 15(10):1617-1622.[10] Yang Chunyun, Xu Xuming. A new multi-channels WDM based on photonic crystal heterostructures [J]. Chin. J. Lumin.(发光学报), 2010, 31(5):757-761 (in Chinese).[11] Robert F S. Outlook brightens for plastic solar cells [J]. Science, 2011, 332(6027):293-1-1.[12] Heliatedk. Heliatek achieves new world record for organic solar cells with certified 9.8% cell efficiency . (2011-12-5).http://www.konarka.com/index.php/site/pressreleasedetail/konarkas_power_plastic_achieves_world_record_83_efficiency_certification_fr.[13] Jiang X X, Xu H, Yang L G, et al. Effect of CsF interlayer on the performance of polymer bulk heterojunction solar cells [J]. Sol. Energy Mater. Sol. Cells, 2009, 93(5):650-653.[14] Zhao Y, Xie Z Y, Qu Y, et al. Effects of thermal annealing on polymer photovoltaic cells with buffer layers and in situ formation of interfacial layer for enhancing power conversion efficiency [J]. Synth. Met., 2008, 158(21-24):908-911.[15] Park S, Tark S J, Lee J S, et al. Effects of intrinsic ZnO buffer layer based on P3HT/PCBM organic solar cells with Al-doped ZnO electrode [J]. Sol. Energy Mater. Sol. Cells, 2009, 93(6-7):1020-1023.[16] Tan Z, Yang C, Zhou E, et al. Performance improvement of polymer solar cells by using a solution processible titanium chelate as cathode buffer layer [J]. Appl. Phys. Lett., 2007, 91(2):0235091-1-3.[17] Lee K, Kim J Y, Park H, et al. Air-stable polymer electronic devices [J]. Adv. Mater., 2007, 19(18):2445-2449.[18] Zhao Y, Xie Z Y, Qin C J, et al. Enhanced charge collection in polymer photovoltaic cells by using an ethanol-soluble conjugated polyfluorene as cathode buffer layer [J]. Sol. Energy Mater. Sol. Cells, 2009, 93(5):604-608.[19] Yang L Y, Xu H, Tian H, et al. Effect of cathode buffer layer on the stability of polymer bulk heterojunction solar cells [J]. Sol. Energy Mater. Sol. Cells, 2010, 94(10):1831-1834.[20] Wang Y L, Yang L Y, Yao C, et al. Enhanced performance and stability in polymer photovoltaic cells by using lithium benzoate as cathode interfacial layer [J]. Sol. Energy Mater. Sol. Cells, 2011, 95(4):1243-1247.[21] He Z C, Zhong C M, Huang X, et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells [J]. Adv. Mater., 2011, 23(40):4636-4643.[22] Nam C Y, Su D, Black C T. High-performance air-processed polymer fullerene bulk heterojunction solar cells [J]. Adv. Funct. Mater., 2009, 19(22):3552-3559.[23] Jrgensen M, Norrman K, Krebs F C. Stability/degradation of polymer solar cells [J]. Sol. Energy Mater. Sol. Cells, 2008, 92(7):686-714.