LI Chang, ZHANG Ting, XUE Wei, SUN Shuo. Effects of Cathode Buffer Layer on The Performance of P3HT∶PCBM-based Photovoltaic Devices Annealed under Various Ambient Pressures[J]. Chinese Journal of Luminescence, 2012,33(2): 221-226
LI Chang, ZHANG Ting, XUE Wei, SUN Shuo. Effects of Cathode Buffer Layer on The Performance of P3HT∶PCBM-based Photovoltaic Devices Annealed under Various Ambient Pressures[J]. Chinese Journal of Luminescence, 2012,33(2): 221-226 DOI: 10.3788/fgxb20123302.0221.
Effects of Cathode Buffer Layer on The Performance of P3HT∶PCBM-based Photovoltaic Devices Annealed under Various Ambient Pressures
Organic photovoltaic devices based on the bulk heterojunction of poly(3-hexylthiophene) and [6
6]-phenyl-C
61
butyric acid methyl ester(P3HT∶PCBM) have been fabricated in this work. We have studied that the effects of LiF
as cathode buffer layer
on the performance of pre-annealed devices under various ambient pressure. The results indicate that the key role of ultrathin LiF layer is to increase the short circuit current and maintain the open circuit voltage
which can improve the power conversion efficiencies. Nevertheless
the performance of polymer solar cells are mainly determined by the morphology of active layer and the configuration of interface between electrode and blend layer
while the latter could be improved by cathode buffer layer.
关键词
Keywords
references
Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions [J]. Science, 1995, 270(5243):1789-1791.[2] Schn J H, Kloc Ch, Haddon R C, et al. A superconducting field-effect switch [J]. Science, 2000, 288(5466):656-658.[3] Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing [J]. Science, 2007, 317(5835): 222-225.[4] Brabec C J. Organic photovoltaics: Technology and market [J]. Sol. Energy Mater. Sol. Cells, 2004, 83(2):273-292.[5] Ma W, Yang C Y, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J]. Adv. Funct. Mater., 2005, 15(10):1617-1622.[6] Konarka Technologies Inc. Konarka's power plastic achieves world record 8.3% efficiency certification from national energy renewable laboratory(NREL) . . http://www.konarka.com/index.php/site/pressreleasedetail/konarkas_power_plastic_achieves_world_record_83_efficiency_certification_fr.[7] Li G, Shrotriya V, Huang J S, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J]. Nat. Mater., 2005, 4(11):864-868.[8] Campoy-Quiles M, Ferenczi T, Agostinelli T, et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer: Fullerene solar cell blends [J]. Nat. Mater., 2008, 7(2):158-164.[9] Ahlswede E, Hanisch J, Powalla M. Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells [J]. Appl. Phys. Lett., 2007, 90(16):163504-1-3.[10] Li Shuang, Zhou Xiang. Effects of molybdenum oxide anode buffer layer on performance of organic solar cells [J]. Chin.J. Lumin. (发光学报), 2010, 31(2):291-295 (in Chinese).[11] Liu Yadong, Su Zisheng, Zhuang Taojun, et al. Significant enhanced performance of organic solar cells with F16CuPc as the anode buffer layer [J]. Chin. J. Lumin. (发光学报), 2011, 32(11):1176-1184 (in Chinese).[12] Huang Y C, Liao Y C, Li S S, et al. Study of the effect of annealing process on the performance of P3HT/PCBM photovoltaic devices using scanning-probe microscopy [J]. Sol. Energy Mater. Sol. Cells, 2009, 93(6):888-892.[13] Zhokhavets U, Erb T, Gobsch G, et al. Relation between absorption and crystallinity of poly(3-hexylthiophene)/fullerene films for plastic solar cells [J]. Chem. Phys. Lett., 2006, 418(4):324-350.[14] Li G, Shrotriya V, Yao Y, et al. Manipulating regioregular poly(3-hexylthiophene)∶ -phenyl-C61-butyric acid methyl ester blendsroute towards high efficiency polymer solar cells [J]. J. Mater. Chem., 2007, 17(30):3126-3140.[15] Brabec C J, Shaheen S E, Winder C, et al. Effect of LiF/metal electrodes on the performance of plastic solar cells [J]. Appl. Phys. Lett., 2002, 80(7):1288-1290.[16] Brabec C J, Cravino A, Meissner D, et al. Origin of the open circuit voltage of plastic solar cells [J]. Adv. Funct. Mater., 2001, 11(5):374-380.[17] Schilinsky P, Waldauf C, Hauch J, et al. Simulation of light intensity dependent current characteristics of polymer solar cells [J]. J. Appl. Phys., 2004, 95(5):2816-2819.